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Foreword to the first edition
This is Terry Tao’s first book. The manuscript was prepared early in 1991, whenTerry was 15 years of age. We, at Deakin University, commisioned Terry to write abook on mathematical problem solving which would be suitable for use in a DeakinUniversity course taken mainly by practising school teachers.
The brief given to Terry was to write a book that would be at least partly com-prehensible to those who did not have high formal mathematical qualifications, yetwould enable all readers, whatever their mathematical backgrounds, to appreciatethe beauty of elegant problem-solving stragies. The outcome of Terry’s effort is awork which, we are confident, will inspire teachers and students of mathematicsat all levels to reflect on the obvious youthful zest, joy, yet dogged determiniationto achieve an excellent result, that characterise Terry’s responses to challengingmathematical problems.
Since it was to be Terry’s first book, we wanted it to be a work which, in the future,he would regard as something special. Given Terry’s mathematical precocity werealised, of course, that it was likely that the book would find its place on manyschool and college library shelves around the world, and we wanted it to stand asa vibrant testimony to how an outstanding mathematical mind went about solvingchallenging mathematical problems.
Clearly, the instructions we gave Terry defined a highly problematic task. Howcould anyone write a book that revealed deep (yet, somewhat paradoxically, ap-parently simple) mathematical insights but which was simultaneously capable ofbeing appreciated (if not fully understood) by persons without large and formalmathematical backgrounds? You, the reader, will be the judge of how well thisproblem is solved in this book.
The interested reader is referred to published articles on Terry Tao (Clements 1984;Gross 1986) for more complete biographical details than can be provided here. Terrywas born in Adelaide in July 1975, the eldest son of Billy (a pediatrician) andGrace (an honours graduate in physics and mathematics). His parents recognizedquite early that he had mathematical talent and in 1983, aged 7, he was allowedto study mathematics at a local high school. At the end of 1983 he passed the
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South Australian matriculation Mathematics 1 and Mathematics 2 examinationswith scores of 90% and 85% respectively, and in 1984, aged 8 years, he scored 760on the mathematical portion of the College Board (USA) Scholastic Aptitude Test(SAT-M), a result higher than any that had been achieved by a North Americanchild of the same age, and one that was above 99th percentile for college-bound,12th-graders in the United States.
In 1986, 1987, and 1988, Terry obtained bronze, silver, and gold medals, respec-tively, for Australia in the International Mathematics Olympiad. He obtained the‘gold’ during the month he turned 13, and is easily the youngest gold medal win-ner form any country in the history of the Olympiads. In 1989 he enrolled as afull-time student at Flinders University (in Adelaide), and in December 1990 hecompleted his BSc degree at Flinders, receiving a special letter of commendationfrom the Chancellor. In 1991 he completed a BSc honours degree in mathematics,at Flinders, and in 1992, aged 17, he commenced PhD studies in mathematics atPrinceton University in the United States.
In 1986 Miraca Gross said of Terry, ‘He is a delightful young boy who is aware thathe is different but displays no conceit about his remarkable gifts and has an unusualability to relate to a wide range of people, from children younger than himself to theuniversity faculty members’ (Gross 1986, p. 5). As someone who as watched Terry’sdevelopment over the years, I can say that the same comment still applies today.Throughout the pages of this book you will discover an impish, yet subtle senseof humour that interacts, in an intguiging way, with an obvious and overwhelmingdesire to achieve the best possible solution. Julian Stanley, the Johns HopkinsUniversity professor who, for many years, has studied mathematically precociousyoungsters in the United States, was moved to write that sometimes he thoughtthat he and his colleagues ‘were learning more from Terry than he and his parentswere learning from us’ (Stanley 1986, p. 11). Stanley’s comments are relevant ina broader educational context - this book has something to teach us all. I believethat all persons interested in mathematics, and even many who do not profess suchan interest, will, by reading this book, be challenged to reflect on many generaleducational issues - not least of which is the question of what our schools are doing,and what they could be doing, to meet the interests and needs of those with specialgifts.
(1) Clements, M.A. (1984), Terence Tao, Educational Studies in Mathematics13, 213–238.
(2) Gross, M. (1986), Radical acceleration in Australia: Terence Tao, G/C/T9(1), 2–9.
(3) Staney, J.C. (1986), Insights, G/C/T 9(1), 10–11.M.A. (Ken) ClementsFaculty of Education
Deakin UniversityDecember 1991

Preface to the first edition
Proclus , an ancient Greek philosopher, said:This therefore, is mathematics: she reminds you of the invisible
forms of the soul; she gives life to her own discoveries; she awakensthe mind and purifies the intellect; she brings to light our intrinsicideas; she abolishes oblivion and ignorance which are ours by birth. . .
But I just like mathematics because it’s fun.
Mathematical problems, or puzzles, are important to real mathematics (like solvingreal-life problems), just as fables, stories and anecdotes are important to the youngin understanding real life. Mathematical problems are “sanitized” mathematics,where an elegant solution has already been found (by someone else, of course),the question is stripped of all superfluousness and posed in an interesting and(hopefully) thought-provoking way. If mathematics is likened to prospecting forgold, solving a good mathematical problem is akin to a “hide-and-seek” course ingold-prospecting: you are given a nugget to find, and you know what it looks like,that it is out there somewhere, that it is not too hard to reach, that unearthing it iswithin your capabilities, and you have conveniently been given the right equipment(i.e. data) to get it. It may be hidden in a cunning place, but it will requireingenuity rather than digging to reach it.
In this book I shall solve selected problems from various levels and branches ofmathematics. Starred problems (*) indicate an additional level of difficulty, eitherbecause some higher mathematics or some clever thinking are required; double-starred questions (**) are similar, but to a greater degree. Some problems haveadditional exercises at the end that can be solved in a similar manner or involve asimilar piece of mathematics. While solving these problems, I will try to demon-strate some tricks of the trade when problem-solving. Two of the main weapons- experience and knowledge - are not easy to put into a book: they have to beacquired over time. But there are many simpler tricks that take less time to learn.There are ways of looking at a problem that make it easier to find a feasible attackplan. There are systematic ways of reducing a problem into successively simplersub-problems. But, on the other hand, solving the problem is not everything. Toreturn to the gold nugget analogy, strip-mining the neighbourhood with bulldoz-ers is clumsier than doing a careful survey, a bit of geology, and a small amountof digging. A solution should be relatively short, understandable, and hopefullyhave a touch of elegance. It should also be fun to discover. Transforming a nice,
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short little geometry question into a ravening monster of an equation by textbookcoordinate geometry doesn’t have the same taste of victory as a two-line vectorsolution.
As an example of elegance, here is a standard result in Euclidean geometry:
Show that the perpendicular bisectors of a triangle are concurrent.
This neat little one-liner could be attacked by coordinate geometry. Try to do sofor a few minutes (hours?), then look at this solution:
Proof. Call the triangle ABC. Now let P be the intersection of the perpen-dicular bisectors of AB and AC. Because P is on the AB bisector, |AP | = |PB|.Because P is on the AC bisector, |AP | = |PC|. Combining the two, |BP | = |PC|.But this means that P has to be on the BC bisector. Hence all three bisectors areconcurrent. (Incidentally, P is the circumcentre of ABC.) �
The following reduced diagram shows why |AP | = |PB| if P is on the AB perpen-dicular bisector: congruent triangles will pull it off nicely.
This kind of solution - and the strange way that obvious facts mesh to form anot-so-obvious fact - is part of the beauty of mathematics. I hope that you too willappreciate this beauty.
Acknowledgements
Thanks to Peter O’Halloran, Vern Treilibs, and Lenny Ng for their contributionsof problems and advice.
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Special thanks to Basil Rennie for corrections and ingenious shortcuts in solutions,and finally thanks to my family for support, encouragement, spelling corrections,and put-downs when I was behind schedule.
Almost all of the problems in this book come from published collections of problemsets for mathematics competitions. These are sourced in the texts, with full detailsgiven in the reference section of the book. I also used a small handful of problemsfrom friends or from various mathematical publications; these have no source listed.

Preface to the second edition
This book was written fifteen years ago; literally half a lifetime ago, for me. In theintervening years, I have left home, moved to a different country, gone to graduateschool, taught classes, written research papers, advised graduate students, marriedmy wife, and had a son. Clearly, my perspective on life and on mathematics isdifferent now than it was when I was fifteen; I have not been involved in problem-solving competitions for a very long time now, and if I were to write a book nowon the subject it would be very different from the one you are reading here.
Mathematics is a multifaceted subject, and our experience and appreciation of itchanges with time and experience. As a primary school student, I was drawn tomathematics by the abstract beauty of formal manipulation, and the remarkableability to repeatedly use simple rules to achieve non-trivial answers. As a high-school student, competing in mathematics competitions, I enjoyed mathematics asa sport, taking cleverly designed mathematical puzzle problems (such as those inthis book) and searching for the right “trick” that would unlock each one. As anundergraduate, I was awed by my first glimpses of the rich, deep, and fascinatingtheories and structures which lie at the core of modern mathematics today. As agraduate student, I learnt the pride of having one’s own research project, and theunique satisfaction that comes from creating an original argument that resolveda previously open question. Upon starting my career as a professional researchmathematician, I began to see the intuition and motivation that lay behind thetheories and problems of modern mathematics, and was delighted when realizinghow even very complex and deep results are often at heart be guided by verysimple, even common-sensical, principles. The “Aha!” experience of grasping oneof these principles, and suddenly seeing how it illuminates and informs a largebody of mathematics, is a truly remarkable one. And there are yet more aspects ofmathematics to discover; it is only recently for me that I have grasped enough fieldsof mathematics to begin to get a sense of the endeavour of modern mathematics asa unified subject, and how it connects to the sciences and other disciplines.
As I wrote this book before my professional mathematics career, many of theseinsights and experiences were not available to me, and so the writing here is whenI wrote this book, and so in many places the exposition has a certain innocence, oreven naivete. I have been reluctant to tamper too much with this, as my youngerself was almost certainly more attuned to the world of the high-school problemsolver than I am now. However, I have made a number of organizational changes,arranging the material into what I believe is a more logical order, and editing those
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parts of the text which were inaccurate, badly worded, confusing, or unfocused.I have also added some more exercises. In some places, the text is a bit dated(Fermat’s last theorem, for instance, has now been proved rigourously), and I nowrealize that several of the problems here could be handled more quickly and cleanlyby more “high-tech” mathematical tools; but the point of this text is not to presentthe slickest solution to a problem or to provide the most up-to-date survey of results,but rather to show how one approaches a mathematical problem for the first time,and how the painstaking, systematic experience of trying some ideas, eliminatingothers, and steadily manipulating the problem can lead, ultimately, to a satisfyingsolution.
I am greatly indebted to Tony Gardiner for encouraging and supporting the reprint-ing of this book, and to my parents for all their support over the years. I am alsotouched by all the friends and acquaintances I have met over the years who had readthe first edition of the book. Last, but not least, I owe a special debt to my parentsand the Flinders Medical Centre computer support unit for retrieving a fifteen-yearold electronic copy of this book from our venerable Macintosh Plus computer!
Terence TaoDepartment of Mathematics,
University of California, Los AngelesDecember 2005

Strategies in problem solving
The journey of a thousand miles begins with one step. - Lao Tzu
Like and unlike the proverb above, the solution to a problem begins (and continues,and ends) with simple, logical steps. But as long as one steps in a firm, cleardirection, with long strides and sharp vision, one would need far, far less than themillions of steps needed to journey a thousand miles. And mathematics, beingabstract, has no physical constraints; one can always restart from scratch, try newavenues of attack, or backtrack at an instant’s notice. One does not always havethese luxuries in other forms of problem-solving (e.g. trying to go home if you arelost).
Of course, this does not necessarily make it easy; if it was easy, then this bookwould be substantially shorter. But it makes it possible.
There are several general strategies and perspectives to solve a problem correctly;(Polya, 1948) is a classic reference for many of these. Some of these strategies arediscussed below, together with a brief illustration of how each strategy can be usedon the following problem:
Problem 1.1. A triangle has its lengths in an arithmetic progres-sion, with difference d. The area of the triangle is t. Find thelengths and angles of the triangle.
Understand the problem. What kind of problem is it? There are threemain types of problems:
• “Show that . . . ” or “Evaluate . . . ” questions, in which a certain statementhas to be proved true, or a certain expression has to be worked out;
• “Find a . . . ” or “Find all . . . ” questions, which requires one to findsomething (or everything) that satisfies certain requirements; and
• “Is there a . . . ” questions, which either require you to prove a statementor provide a counterexample (and thus is one of the previous two types ofproblem).
The type of problem is important because it determines the basic method of ap-proach. “Show that . . . ” or “Evaluate . . . ” problems start with given data and the
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objective is to deduce some statement or find the value of an expression; this typeof problem is generally easier than the other two types because there is a clearlyvisible objective, one that can be deliberately approached. “Find a . . . ” questionsare more hit-and-miss; generally one has to guess one answer that nearly works,and then tweak it a bit to make it more correct; or alternatively one can alter therequirements that the object-to-find must satisfy, so that they are easier to satisfy.“Is there a . . . ” problems are typically the hardest, because one first must make adecision on whether an object exists or not, and provide a proof on one hand, or acounter-example on the other.
Of course, not all questions fall into these neat categories; but the general formatof any question will still show the basic idea to pursue when solving a problem.For example, if one tries to solve the problem “Find a hotel in this city to sleepin for the night”, one should alter the requirements to, say “Find a vacant hotelwithin 5 kilometres with a room that costs less than 100$ a night” and then usepure elimination. This is a better strategy than proving that such a hotel does ordoes not exist, and is probably a better strategy than picking any handy hotel andtrying to prove that one can sleep in it.
In Problem 1.1 question, we have an “Evaluate. . . ” type of problem. We need tofind several unknowns, given other variables. This suggests an algebraic solutionrather than a geometric one, with a lot of equations connecting d, t, and the sidesand angles of the triangle, and eventually solving for our unknowns.
Understand the data. What is given in the problem? Usually, a questiontalks about a number of objects which satisfy some special requirements. To un-derstand the data, one needs to see how the objects and requirements react to eachother. This is important in focusing attention on the proper techniques and nota-tion to handle the problem. For example, in our sample question, our data are atriangle, the area of the triangle, and the fact that the sides are in an arithmeticprogression with separation d. Because we have a triangle, and are considering thesides and area of it, we would need theorems relating sides, angles, and areas totackle the question: the sine rule, cosine rule, and the area formulas, for exam-ple. Also, we are dealing with an arithmetic progression, so we would need somenotation to account for that; for example, the side lengths could be a, a + d, anda + 2d.
Understand the objective. What do we want? One may need to find an ob-ject, prove a statement, determine the existence of a object with special properties,or whatever. Like the flip side of this strategy, “Understand the data”, knowingthe objective helps focus attention on the best weapons to use. Knowing the ob-jective also helps in creating tactical goals which we know will bring us closer tosolving the question. Our example question has the objective of “Find all the sidesand angles of the triangle”. This means, as mentioned before, that we will needtheorems and results concerning sides and angles. It also gives us the tactical goalof “find equations involving the sides and angles of the triangle”.
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Select good notation. Now that we have our data and objective, we mustrepresent it in an efficient way, so that the data and objective are both representedas simply as possible. This usually involves the thoughts of the past two strategies.In our sample question, we are already thinking of equations involving d, t, and thesides and angles of the triangle. We need to express the sides and angles in termsof variables: one could choose the sides to be a, b, and c, while the angles could bedenoted α, β, γ. But we can use the data to simplify the notation: we know thatthe sides are in arithmetic progression, so instead of a, b, and c, we can have a,a + d, and a + 2d instead. But the notation can be even better if we make it moresymmetrical, by making the side lengths b−d, b, and b+d. The only slight drawbackto this notation is that b is forced to be larger than d. But on further thought, wesee that this is actually not a restriction; in fact the knowledge that b¿d is an extrapiece of data for us. We can also trim the notation more, by labelling the angles α,β, and 180◦ − α − β, but this is ugly and unsymmetrical - it is probably better tokeep the old notation, but bearing in mind that α + β + γ = 180◦.
Write down what you know in the notation selected; draw a diagram.Putting everything down on paper helps in three ways:
(a) You have an easy reference later on;(b) The paper is a good thing to stare at when you’re stuck; and(c) The physical act of writing down of what you know can trigger new in-
spirations and connections.
Be careful, though, of writing superfluous material, and do not overload your paperwith minutiae; one compromise is to highlight those facts which you think will bemost useful, and put more questionable, redundant, or crazy ideas in another partof your scratch paper. Here are some equations and inequalities one can extractfrom our example question:
• (Physical constraints) α, β, γ, t > 0 and b ≥ d; we can also assume d ≥ 0without loss of generality;
• (Sum of angles in a triangle) α + β + γ = 180◦;• (Sine rule) (b − d)/ sin α = b/ sinβ = (b + d)/ sin γ;• (Cosine rule) b2 = (b − d)2 + (b + d)2 − 2(b − d)(b + d) cosβ, etc.;• (Area formula) t = 1
2 (b−d)b sinγ = 12 (b−d)(b+d) sin β = 1
2b(b+d) sin α;• (Heron’s formula) t2 = s(s− b + d)(s− b)(s− b− d), where s = ((b− d) +
b + (b + d))/2 is the semiperimeter;• (Triangle inequality) b + d ≤ b + (b − d).
Many of these facts may prove to be useless or distracting. But we can alreadyidentify some useful ones. The equalities are likely to be more useful than theinequalities, since our objective (and data) comes in the form of equalities. AndHeron’s formula looks especially promising, because the semiperimeter simplifies tos = 3b/2. So we can highlight “Heron’s formula” as being likely to be useful.
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We can of course also draw a picture. This is often quite helpful for geometryquestions, though in this case the picture doesn’t seem to add much:
Modify the problem slightly. There are many ways to vary a problem intoone which may be easier to deal with:
(a) Consider a special case of the problem, such as extreme or degeneratecases.
(b) Solve a simplified version of the problem.(c) Formulate a conjecture which would imply the problem, and try to prove
that first.(d) Derive some consequence of the problem, and try to prove that first.(e) Examine solutions of similar problems.(f) Generalize the problem.
This is useful when you can’t even start a problem, because solving for a simplerrelated problem sometimes reveals the way to go on the main problem. Similarly,considering extreme cases and solving the problem with additional assumptions canalso shed light on the general solution. But be warned that special cases are, bytheir nature, special, and some elegant technique could conceivably apply to themand yet have absolutely no utility in solving the general case. This tends to happenwhen the special case is too special. Start with modest assumptions first, becausethen you are sticking as closely as possible to the spirit of the problem.
In Problem 1.1, we can try a special case such as d = 0. In this case we need tofind the side length of an equilateral triangle of area t. In this case, it is a standardmatter to compute the answer, which is b = 2t1/2/31/4. This gives us no clueson the general problem, except perhaps as a check. This strategy is not reallyappropiate for this calculation-type question, athough it can sometimes suggestwhat the general answer would be (in particular, we should now expect some squareroots and fourth roots in the final answer). Consideration of similar problems drawslittle as well, except one gets further evidence that a gung-ho algebraic attack iswhat is needed.
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Modify the problem significantly. In this more aggressive type of strategy,we perform major modifications to a problem such as removing data, swappingthe data with the objective, or negating the objective (e.g. trying to disprove astatement rather than prove it). Basically, we try to push the problem until itbreaks, and then try to identify where the breakdown occurred; this identifies theweak spots of the problem, as well as where the main difficulty will lie. Theseexercises can also help in getting an instinctive feel of what will “work”, and whatwill probably fail.
In regard to our particular question, one could replace the triangle with a quadri-lateral, circle, etc. Not much help there: the problem just gets more complicated.But on the other hand, one can see that one doesn’t really need a triangle in thequestion, but just the dimensions of the triangle. We don’t really need to know theposition of the triangle. So here is further confirmation that we should concentrateon the sides and angles (i.e. a, b, c, α, β, γ) and not on coordinate geometry, orsimilar approaches.
We could omit some objectives; for example instead of working out all the sides andangles we could work out just the sides, for example. But then one can notice thatby the cosine and sine rules, the angles of the triangle will be determined anyway.So it is only neccesary to solve for the sides. But we know that the sides havelengths b − d, b, and b + d, so we only need to find what b is to finish the problem.
We can also omit some data, like the arithmetic difference d, but then we seem tohave several possible solutions, and not enough data to solve the problem. Similarly,omitting the area t will not leave enough data to clinch a solution. (Sometimes onecan partially omit data, for instance by only specifying that the area is larger orsmaller than some threshold t0; but this is getting complicated. Stick with thesimple options first.) Reversal of the problem (swapping data with objective) leadsto some interesting ideas though. Suppose you had a triangle with arithmeticdifference d, and you wanted to shrink it (or whatever) until the area becomest. One could imagine our triangle shrinking and deforming, while preserving thearithmetic difference of the sides. Similarly, one could consider all triangles with afixed area, and mold the triangle into one with the sides in the correct arithmeticprogression. These ideas could work in the long run: but I will solve this questionby another approach. Don’t forget, though, that a question can be solved in morethan one way, and no particular way can really be judged the absolute best.
Prove results about our question. Data is there to be used, so one shouldpick up the data and play with it. Can it produce more meaningful data? Also,proving small results could be beneficial later on, when trying to prove the mainresult or to find the answer. However small the result, don’t forget it - it couldhave bearing later on. Besides, it gives you something to do if you’re stuck.
In a “Evaluate. . . ” problem like the triangle question, this tactic is not as useful.But one can try. For example, our tactical goal is to solve for b. This dependson the two parameters d and t. In other words, b is really a function: b = b(d, t).
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(If this notation looks out of place in a geometry question, then that is only be-cause geometry tends to ignore the functional dependence of objects. For example,Heron’s formula gives an explicit form for the area A in terms of the sides a, b,and c: in other words, it expresses the function A(a, b, c).) Now we can provesome mini-results about this function b(d, t), such as b(d, t) = b(−d, t) (becausean arithmetic progression has an equivalent arithmetic progression with invertedarithmetic difference), or b(kd, k2t) = kb(d, t) (this is done by dilating the trianglethat satisfies b = b(d, t) by k). We could even try differentiate b with respect to dor t. These tactics are yet another way of attacking the problem, and I will leavethese ideas for you.
Simplify, exploit data, and reach tactical goals. Now we have set upnotation and have a few equations, we should seriously look at attaining our tacticalgoals that we have established. In simple problems, there are usually standard waysof doing this. (For example, algebraic simplification is usually discussed thoroughlyin high-school level textbooks.) Generally, this part is the longest and most difficultpart of the problem: however, once can avoid getting lost if one remembers therelevant theorems, the data and how they can be used, and most importantly theobjective. It is also a good idea to not apply any given technique or method blindly,but to think ahead and see where one could hope such a technique to take one;this can allow one to save enormous amounts of time by eliminating unprofitabledirections of inquiry before sinking lots of effort into them, and conversely to givethe most promising directions priority.
In Problem 1.1, we are already concentrating on Heron’s formula. We can use thisto attain our tactical goal of solving for b. After all, we have already noted that thesine and cosine rules can determine α, β, γ once b is known. As further evidencethat this is going to be a step forward, note that Herons formula involves d and t- in essence, it uses all our data (we have already incorporated the fact about thesides being in arithmetic progression into our notation). Anyway, Herons formulain terms of d, t, b becomes
which we can simplify to
t2 =3b2(b − 2d)(b + 2d)
3b2(b2 − 4d2)16
Now we have to solve for b. The right hand side is a polynomial in b (treating d andt as constants), and in fact it is a quadratic in b2. Now quadratics can be solvedeasily: if we put clear denominators and put everything on the left-hand side weget
3b4 − 12d2b2 − 16t2 = 0
so, using the quadratic formula,
b2 =12d2 ±√
144d4 + 196t2
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Because b has to be positive, we get
as a check, we can verify that when d = 0 this agrees with our previous computationof b = 2t1/2/31/4. Once we ompute the sides b − d, b, b + d, the evaluation of theangles α, β, γ then follows from the cosine laws, and we are done!

Examples in number theory
There is divinity in odd numbers, either in nativity, chance, ordeath. William Shakespeare, “The Merry Wives of Windsor”.
Number theory may not neccesarily be divine, but it still has an aura of mystiqueabout it. Unlike algebra, which has as its backbone the laws of manipulatingequations, number theory seems to derive its results from a source unknown. Takefor example Lagrange’s theorem (first conjectured by Fermat) that every positiveinteger is a sum of four perfect squares (e.g. 30 = 42 + 32 + 22 + 12). Algebraically,we are talking about an extremely simple equation: but because we are restricted tothe integers, the rules of algebra fail. The result is is infuriatingly innocent-lookingand experimentation shows that it does seem to work, but offers no explanationwhy. Indeed, Lagrange’s theorem cannot be easily proved by the elementary meanscovered in this book: an excursion into Gaussian integers or something similar isneeded.
Other problems, though, are not as deep. Here are some simple examples, allinvolving a natural number n:
(a) n always has the same last digit as its fifth power n5.(b) n is a multiple of 9 if and only if the sum of its digits is a multiple of 9.(c) (Wilson’s theorem) (n−1)!+1 is a multiple of n if and only if n is a prime
number.(d) If k is a positive odd number, then 1k +2k + . . . +nk is divisible by n+1.(e) There are exactly four numbers that are n digits long (allowing for padding
by zeroes) and which are exactly the same last digits as their square. Forinstance, the four three-digit numbers with this property are 000, 001,625, and 876.
These statements can all be proved by elementary number theory; all revolve aroundthe basic idea of modular arithmetic, which gives you the power of algebra but lim-ited to a finite number of integers. Incidentally, trying to solve the last assertion (e)can eventually lead to the notion of p-adics, which is sort of an infinite-dimensionalform of modular arithmetic.
Basic number theory is a pleasant backwater of mathematics. But the applicationsthat stem from the basic concepts of integers and divisibility are amazingly diverseand powerful. The concept of divisibility leads naturally to that of primes, which
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moves into the detailed nature of factorisation and then to one of the jewels ofmathematics in the last part of the previous century: the prime number theorem,which can predict the number of primes less than a given number to a good degreeof accuracy. Meanwhile, the concept of integer operations lends itself to modulararithmetic, which can be generalized from a subset of the integers to the algebraof finite groups, rings, and fields, and leads to algebraic number theory, when theconcept of “number” is expanded into irrational surds, splitting fields, and complexnumbers. Number theory is a fundamental cornerstone which supports a sizeablechunk of mathematics. And, of course, it’s fun too.
Before we begin looking at problems, let’s review some basic notation. A naturalnumber is a positive integer (we will not consider 0 a natural number). The setof natural numbers will be denoted N. A prime number is a natural number withexactly two factors: itself and 1; we do not consider 1 to be prime. Two naturalnumbers m and n are coprime if their only common factor is 1.
The notation “x = y (mod n)”, which we read as “x equals y modulo n”, meansthat x and y differ by a multiple of n, thus for instance 15 = 65 (mod 10). Thenotation “(mod n)” signifies that we are working in a modular arithmetic wherethe modulus n has been identified with 0; thus for instance modular arithmetic(mod 10) is the arithmetic in which 10 = 0. Thus for instance we have 65 =15 + 10 + 10 + 10 + 10 + 10 = 15 + 0 + 0 + 0 + 0 + 0 = 15 (mod 10). Modulararithmetic differs also from standard arithmetic in that inequalities do not exist,and that all numbers are integers. For example, 7/2 �= 3.5 (mod 5), but rather7/2 = 12/2 = 6 (mod 5) because 7 = 12(mod 5). It may seem strange to divide inthis round-about way, but in fact one can find that there is no real contradiction,although some divisions are illegal, just as division-by-zero is illegal within thetraditional field of real numbers. As a general rule, division is OK if the denominatoris coprime with the modulus n.
We mentioned above that one can learn something about a number (in particular,whether it is divisible by 9) by summing all its digits. In higher mathematics, itturns out that this operation is not particularly important, but it is quite popularin recreational mathematics and has even has been given mystical connotations bysome! Certainly, digit summing appears fairly often in mathematics competitionproblems, such as this one.
Problem 2.1 (Taylor 1989, p. 7). Show that among any 18 con-secutive 3-digit numbers there is at least one which is divisible bythe sum of its digits.
This is a finite problem: there are only 900 or so 3-digit numbers, so theoreticallywe could evaluate the problem manually. But let’s see if we can save ourselves some

work. First of all, the objective looks a little weird: we want the a number to bedivisible by the sum of digits. Let’s first write down the objective as a mathematicalformula, so that we can manipulate it more easily. A 3-digit number can be writtenin the form abc10 where a, b, c are the digits; we are writing abc10 to avoid confusionwith abc; note that abc10 = 100a+10b+c, but abc = a×b×c. If we use the standardnotation a|b to denote the statement that a divides b, we now want to solve
(1) (a + b + c)|abc10
where abc10 are the digits of one of the 18 given consecutive numbers. Can wereduce, simplify, or somehow make usable this equation? It is possible, but it isnot simplifiable to anything halfway decent (e.g. a useful equation connecting a,b, and c directly). In fact (1) is a horrendous thing to manipulate, even after onesubstitutes 100a + 10b + c for abc10. Take a look at the solutions abc10 of (1):
100, 102, 108, 110, 111, 112, 114, 117, 120, 126, . . . , 990, 999
They seem to be haphazard and random. However, they do seem to occur oftenenough so that any run of 18 consecutive numbers should have one. And what isthe significance of the 18 anyway? Assuming it is not a red herring, (perhaps only13 consecutive numbers are needed, but the 18 is there to throw you off the track)why have 18? It may occur to some that the sums of digits of a number are ratherrelated to the number 9 (e.g. any number has the same remainder as its digit sumupon dividing by 9) and 18 is related to 9, so there could be a vague connection.Still, consecutive numbers and divisibility don’t mix. It seems that we have toreformulate the question or propose a related one to have a hope of solving it.
Now that we are on the lookout for anything related to the number 9, we shouldnotice that most numbers which actually do satisfy (1) are multiples of 9, or atleast multiples of 3. In fact there are only three exceptions on the list above (100,110 and 112), and practically all of the multiples of 9 satisfy (1). So instead oftrying to prove
For any 18 consecutive numbers, at least one solves (1).
directly, we could try something like
For any 18 consecutive numbers, there is a multiple of 9 whichsolves (1).
This route seems to “break the ice” between our data (18 consecutive numbers)and the objective (A number satisfying (1)) because 18 consecutive numbers alwayscontain a multiple of 9 (in fact they contain two such multiples), and from numericalevidence, and the heuristic properties of the number 9, it seems that multiples of9 satisfy (1). This “stepping stone” approach is the best way to reconcile twounfriendly statements.
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Now this particular stepping stone (considering multiples of 9) does work, but a bitof extra work is needed to cover all the cases. It is actually better to use multiplesof 18:
18 consecutive numbers =⇒ a multiple of 18 =⇒ a solution to (1)
The reasons for this change are twofold:
• 18 consecutive numbers will always contain exactly one multiple of 18,but they would contain two multiples of 9. It seems neater, and moreappropriate, to use multiples of 18 than to use multiples of 9. After all, ifwe used multiples of 9 to solve the problem, the question would only need9 consecutive numbers instead of 18.
• It should be easier to prove (1) for multiples of 18 than for multiples of9, since multiples of 18 are nothing more than a special case of multiplesof 9. Indeed, it turns out that multiples of 9 don’t always work (considerfor instance 909), but multiples of 18 will, as we shall see.
Anyway, experimentation shows that multiples of 18 seem to work. But why? Take,for example, 216, which is a multiple of 18. The sum of digits is 9, and 9 divides 216because 18 divides 216. To consider another example: 882 is a multiple of 18, andthe sum of digits is 18. Hence 882 is obviously divisible by its digit sum. Messingaround with a few more examples shows that the sum of digits of a multiple of 18is always 9 or 18, which divides the original number almost by default. And withthese guesses a proof soon follows:
Proof. Within the 18 consecutive numbers, one must be a multiple of 18, sayabc10. Because abc10 is a multiple of 9 as well, a + b + c must be a multiple of 9.(Remember the divisibility rule for 9? a number is divisible by 9 if and only if itsdigit sum is divisible by 9). Because a + b + c ranges between 1and 27, a + b + cmust be 9, 18, or 27. 27 only occurs when abc = 999, but that is not a multiple of18. Hence a + b + c is 9 or 18, and so a + b + c|18. But 18|abc10 by definition, soa + b + c|abc10, as desired. �
Remember that with questions involving things like digits, a direct approach is notusually the answer. A cumbersome formula should be simplified into somethingmore manageable. In this case, the phrase “one number out of any 18 consecutivenumbers must be” was replaced by “any multiple of 18 must be” which was weaker,but simpler and more relevant to the question (which was related to divisibility). Itturned out to be a good guess, though. And remember that with finite problems,the strategies are not like those in higher mathematics. For example, the formula
a + b + c|abc10
was not treated like typical mathematics (e.g. application of modular arithmetic),but instead we placed bounds on a + b + c (9, 18, or 27) due to the fact that allnumbers had only three digits, leaving us with the much simpler
9|abc10, 18|abc10, or 27|abc10.

Indeed, we never even had to expand out abc10 algebraically as 100a+10b+c; whilethat may have seemed like the logical first step, it turns out that is sort of a redherring and does not make the problem any clearer to solve.
A final remark: 18 consecutive numbers are the least number needed to insure oneof them satisfies (1). 17 numbers won’t work; consider for instance the sequencefrom 559 to 575. (I used a computer for that, not some tricky mathematics.)
Exercise 2.1. In a parlour game, the “magician” asks one of the participants tothink of a three-digit number abc10. Then the magician asks the participant to addthe five numbers acb10, bac10, bca10, cab10 and cba10, and reveal their sum. Supposethe sum was 3194. What was abc10 originally? (Hint: Get a better expression forthe sum of the five numbers, something more mathematical. Then use modulararithmetic to get some bounds on a, b, and c.)
Problem 2.2 (Taylor 1989, p. 37). Is there a power of 2 suchthat its digits could be re-arranged and made into another powerof 2? (No zeroes are allowed in the leading digit: e.g. 0032 is notallowed.)
This seems like an unsolvable combination: powers of 2, and digit re-arranging.This is because
(a) digit re-arrangement has so many possibilities, and(b) it is not easy to determine individual digits of a power of two.
This probably means that something sneaky is needed.
The first sneaky thing to be done is to guess the answer. Circumstantial evidence(this problem is from a mathematics competition) suggests that this is not a trial-and-error question, and so the answer should probably be “no”. (On the other hand,some exceptionally ingenious construction could pull off a clever rearrangement ofdigits - but such a construction is probably not easy to find. Guess the easy optionsfirst. If you are right, you have saved a lot of time by not pursuing the hard ways.If you are wrong, you were doomed to a long haul anyway. This does not meanthat you should forget about a promising but hard way to solve the problem: butrather, to take a sensible look around before plunging into deep water.)
Like in Problem 2.1, the digits are really sort of a red herring. In Problem 2.1, weonly wanted to know two things about the sum of the digits: firstly, a divisibilityconditionn, and secondly a size restriction. We didn’t want to introduce all thecomplications of an exact equation. It will probably be much the same here: wehave to simplify the problem by generalising the digit-switching process. From apurely logical viewpoint, we are worse off because we have to prove more: but interms of clarity and simplicity we are gaining ground. (Why burden yourself withdata that cannot be used? It will just be a distraction.)
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So, we now have to pick out the main properties of powers of 2 and digit-switching -hopefully, we will find properties of one that are incompatible with the other. Nowlet’s tackle powers of two first; they are easier to handle. Here they are:
1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384, 32768, 65536, . . .
Well, there is not very much you can say about the digits here. The last digit of apower of 2 is obviously even (except for the number 1), but the other digits are quiterandom-looking. Suppose you took the number 4096, for instance. An odd digit, afew even digits and even a 0 digit here. What’s stopping it being re-arranged intoanother power of 2? Could it be re-arranged into 24256 = 1523...936, for instance?“Of course not!” you would say. Why? “Because it’s far too big!”. So, does sizecount? “Yes - There would be thousands of digits in 24256, and only four digits in4096.” Aha - so rearranging digits cannot change the total number of digits. (Writedown any facts which could be of use to your problem, even if they are simple -do not assume that “obvious” facts will always spring to mind when needed. Evenshallowly-dug gold has to be searched - and held on to.)
Well, with this iota of information, can we proceed with our generalizing plan? Ourgeneralized question is now
Is there a power of 2 such that there is another power of 2 withthe same number of digits as the first power of 2?
Unfortunately, the answer to this question is quickly seen to be “yes”; 2048 and4096, for example. We were too general. (Also, a “yes” answer to this questiondoesn’t necessarily yield a “yes” answer to the original problem.) Again, look toProblem 2.1. Merely knowing “the sum of digits of a multiple of 18 has to be amultiple of 9” is not sufficient to solve the problem : we also needed the fact that“the sum of digits of three-digit number is at most 27”. In short, we haven’t foundenough facts about our problem to solve it. Yet - we are still partially successful,because we have restricted the possibilities of digit rearranging. Take the number4096 again. This can only be re-arranged into another four-digit number. Andhow many four-digit powers of 2 are there? only four - 1024, 2048, 4096, and 8192.This is because the powers of two keep doubling: they can’t stay in the same “taxbracket” for too long. In fact, one can soon see that at most four powers of two canhave the same number of digits. (The fifth consecutive power of 2 would be 16 timesthat of the first, and hence would have to have more digits than the first power of2). So what this means is that for each power of 2, there are at most three otherpowers of two that could possibly be digit-rearrangements of the original power oftwo. A partial victory: only three suspects left to eliminate for each power of two,instead of the infinite number before. Perhaps with a bit of extra work we caneliminate those suspects as well.
We have said that when we switch the digits, the number you end up with has thesame number of digits as the original. But the reverse is far from true, and this loneproperty of digit-switching will not solve the problem on its own. This means thatwe have generalized too far and pushed our luck too much. Let’s reel ourselves in

again. Something else could be preserved when we switch digits. Let’s take a lookat some examples - let’s take 4096 again, since we’ve already got some experiencewith this number. The digit-switching possibilities are
4069, 4096, 4609, 4690, 4906,4960, 6049, 6094, 6409,6490, 6904, 6940, 9046, 9064,9406, 9460, 9604, 9640.
What do they have in common? They have the same set of digits. That’s all verywell and good, but the “set of digits” is not a very useful mathematical object (notmany theorems and tools use this concept). However, the sum of digits is a moreconventional weapon. And, well, if two numbers have the same set of digits, thenthey have to have the same digit-sum. So we have another iota of information:digit-switching preserves the digit-sum. Combining this with our previous iota wehave a new replacement question:
Is there a power of 2 such that there is another power of 2 with thesame number of digits and the same digit-sum as the first powerof 2?
Again, if this question is true, the original question is true. Now this question is a biteasier to cope with than the original, because “number of digits” and “digit-sums”are standard number-theory stuff.
With this new concept in mind, let’s look at the digit-sums of the powers of 2,seeing as our new question involves them. Well, we have
Power of 2 Digit sum Power of 2 Digit sum Power of 2 Digit sum1 1 256 13 65536 252 2 512 8 131072 144 4 1024 7 262144 198 8 2048 14 524288 2916 7 4096 19 1048576 3132 5 8192 2064 10 16384 22128 11 32768 26
From this we note that
• The digit sums tend to be quite small. For instance, the digit sum of217 is a mere 14. This is actually a small bit of bad luck, because smallnumbers are more likely to match than are big numbers. (If ten peopleeach randomly pick one two-digit number, there is a sizeable (9.5%) chanceof a match, but if they each pick ten-digit numbers, then there is only aone in a million chance of a match: something about as lousy as thechances of winning the lottery.) But the smallness of the numbers alsoaids in picking out patterns, so perhaps it is not all bad news.
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• Some digit-sums match: for example, 16 and 1024. But it seems that thedigit sums slowly climbs higher anyway: you would expect that a 100-digitpower of 2 would have a higher digit-sum than a 10-digit one. But alsoremember that we are confining ourselves to powers of two with the samenumber of digits, so this idea will not be not much help.
The upshot of these observations is this: digit-sums have an easily appreciablemacroscopic structure (slowly increasing with n; in fact it is highly probable (thoughnot proven!) that the digit sum of 2n is approximately (4.5 log10 2)n ≈1.355n forlarge n) but a lousy microscopic structure. The digits just fluctuate too much. Wementioned earlier that “set of digits” was unwieldy: now it seems that “digit-sum”is not so flash either. Is there another reduction of the problem that will leave uswith something we can really work with?
Hmm. We mentioned earlier that “digit-sum” was a “conventional weapon” inmathematics. Take a look at the preceding question for instance. But the only realway digit-sums can be successfully “mainstreamed” is by considering the digit summodulo 9. One may recall that a number is equal to its digit-sum modulo 9; forexample,
3297 = 3 × 103 + 2 × 102 + 9 × 101 + 7 × 100 (mod 9)
= 3 × 13 + 2 × 12 + 9 × 11 + 7 × 11 (mod 9)
= 3 + 2 + 9 + 7 (mod 9)
because 10 is equal to 1 (mod 9).
So now our new modified question is as follows:
Is there a power of 2 such that there is another power of 2 withthe same number of digits and the same digit-sum modulo 9 as thefirst power of 2?
Now we can use the fact that a number is equal to its digit-sum modulo 9 torephrase this question again:
Is there a power of 2 such that there is another power of 2 withthe same number of digits and the same remainder (mod 9) as thefirst power of 2?
Note that the pesky notions of “rearranging digits”, “set of digits”, and “sum ofdigits” have been completely eliminated, which looks promising. Now let’s modifythe above table of digit-sums of powers of 2 and see what we get.

(mod 9) (mod 9) (mod 9)Power of 2 Remainder Power of 2 Remainder Power of 2 Remainder1 1 256 4 65536 72 2 512 8 131072 54 4 1024 7 262144 18 8 2048 5 524288 216 7 4096 1 1048576 432 5 8192 264 1 16384 4128 2 32768 8
What we have to prove is that no two powers of two have the same remainder(mod 9) and the same number of digits. Well, looking at the table, there areseveral powers of 2 with the same remainder: 1, 64, 4096, and 262144 for example.But none of these four have the same number of digits. Indeed, powers of 2 withthe same remainder (mod 9) seem to be so separated that there is no hope of themhaving the same number of digits. In fact, the powers of 2 with the same remainderseem to be quite regularly spaced . . . and one can quickly see that the remainders(mod 9) repeat themselves every six steps. This conjecture can be easily proved bymodular arithmetic:
2n+6 = 2n26 = 2n × 64 = 2n(mod 9) because 64 = 1 (mod 9).
This result means that the remainders of the powers of 2 will repeat themselvesendlessly, like a repeating decimal: 1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, 5, . . . . Thisin turn means that two powers of 2 with the same digit-sum (mod 9) must be atleast six steps apart. But then the powers of two cannot possibly have the samenumber of digits, because one would be 64 times bigger than the other, at least.So this means that there are no powers of two with the same number of digits andthe same digit-sum (mod 9). We have now proved our modified question, so we canwork backwards until we reach our original question, and write out the full answer:
Proof. Suppose two powers of 2 are related by digit-switching. This meansthat they have the same number of digits, and also have the same digit-sum (mod 9).But the digit-sums (mod 9) are periodic with a period of 6, so the two powers areat least six steps apart. But then it is impossible for them to have the same numberof digits, a contradiction. �
This problem was simplified repeatedly until the more unusable and unfriendlyparts of the problem were exchanged with more natural, flexible and co-operativenotions. This simplification can be a bit of a hit-and-miss affair; there is always thedanger of oversimplification, or mis-simplification (simplifying into a red herring).But in this question, almost anything was better than playing around with digit-switching, so simplification couldn’t do much more harm. There is a chance thatmaneuvering and simplifying may land you into a wild goose chase, but if you’rereally stuck anyway, anything is worth a try.
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Diophantine equations
A Diophantine equation is an algebraic equation (the classic one is a2 + b2 = c2)with the constraint that all variables are integers. The usual objective is to findall solutions to the equation. Generally, there is more than one solution, even ifeverything is integral. These equations can be solved algebraically, but one alsocan use the number-theoretical methods of integer division, modular arithmetic,and integral factorisation. Here is one:
Problem 2.3 (Australian Mathematics Competition 1987, p. 15).Find all integers n such that the equation 1/a + 1/b = n/(a + b) issatisfied for some non-zero integer values of a and b (with a+b �= 0).
This seems like a standard Diophantine equation, so we would probably begin bymultiplying out the denominators, to get
(a + b)/ab = n/(a + b)
(2) (a + b)2 = nab.
Now what? We could eliminate the n, and say that
ab|(a + b)2
(using the divisibility symbol | that we used in Problem 2.1) or try to concentrateon the fact that nab is a square. These techniques are good, but they don’t seemto work on this problem. The relationships of the left and right sides of (2) are notstrong enough. One side is a square, the other is a product.
One thing to keep in mind when problem-solving is to be prepared to abandontemporarily one interesting - but fruitless - approach and try a more promisingone. One could try algebra to attack the problem, then re-apply number theorylater if algebra failed to work. Expanding (2) and collecting terms we can get
a2 + (2 − n)ab + b2 = 0,
and if one is brave enough to use the quadratic formula we get
2[(n − 2) ±
√(n − 2)2 − 4].
This looks very messy, but actually we can turn this messiness to our advantage.We know that a, b, and n are integers, but there is a square root in the formula.Now this can only work if the term inside the square root, (n− 2)2 − 4, is a perfectsquare. But this means that 4 less than a square is a square. This is very restrictive.Because the gaps between the squares get higher than 4 after the first few squares,we only need test low numbers of n. It turns out that (n − 2)2 has to be 4, andhence n is either 0 or 4. Now we can work each case separately, finding either anexample of each or a proof that no such example exists.
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Case 1: n = 0. Feeding this back into, say, (2) we get (a + b)2 = 0, and thusa + b = 0. But this is impossible as in our original equation we now have a 0/0,which is illegal. Hence n cannot be 0.
Case 2: n=4. Again, (2) gives us (a+ b)2 = 4ab, which upon collecting termsgives a2 − 2ab + b2 = 0. Factorizing this we get (a − b)2 = 0, so a must equal b.This is not a contradiction, but an example: a = b, n = 4, works when put into theoriginal equation (2).
So our answer was n = 4, but it was obtained by the rather inelegant method ofthe quadratic formula. Using it is usually clumsy, but as it introduces a square rootterm, which implies that the term inside the square root must be a perfect square,it occasionally comes in useful.
Diophantine problems can get extremely difficult when one of the variables appearsin the exponent; the most notorious of these is Fermat’s last theorem, which assertsthat there are no natural number solutions to an +bn = cn with n > 2. Fortunatelythere are other problems involving exponents which are easier to handle.
Problem 2.4 (Taylor 1989, p.7). Find all solutions of 2n +7 = x2
where n and x are integers.
This kind of question really needs trial and error to find the right tack. Withdiophantine equations, the most elementary methods are modular arithmetic andfactorisation. Modular arithmetic transfers the entire equation to a suitable mod-ulus, sometimes constant (e.g. (mod 7), or (mod 16)) or sometimes variable (e.g.(mod pq)). Factorisation alters the problem into the form (factor) × (factor) =(something nice), where the right-hand side could be a constant (the best possibleresult), a prime, a square, or something else that has a limited choice of factors.For example, in Problem 2.3, both methods were considered early on, but discardedin favour of an algebraic approach, which is actually a factorisation technique indisguise (remember we eventually got (n − 2)2 − 4 = (square)?).
Now it is best to try elementary techniques first, as it may save a lot of dashingabout in circles later. One may have abandoned these methods and tried to analyzethe approximate equation
2n + 7 ≈ 2n/2
which can get into some serious number theory involving topics such as continuedfractions, Pell’s equation, and recursion relations. It can be done; but we’ll lookfor the elegant (i.e. lazy) way out.
Obtaining a useful factorisation is next to impossible, except when n is even. Thenwe get a difference of two squares (a vital factorisation in Diophantine equations)like so:
7 = x2 − 2n = (x − 2m)(x + 2m)
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where m = n/2. Then we can say that x− 2m and x+ 2m, being factors of 7, mustbe −7, −1, 1 or 7; and further breakup into cases soon shows that there are nosolutions (if we assume n is even). But that is about as much as the factorisationmethod can tell us; it doesn’t tell us where the actual solutions are and how manyof them there are. (Although we do now know that n must be odd.)
The modular arithmetic approach is next. The strategy is to use the modulus toget rid of one or more of the terms. For example, we could write the equationmodulo x, to obtain
2n + 7 = 0 (mod x),
or maybe modulo 7, to get
2n = x2 (mod 7).
Unfortunately, these methods don’t work well at all. But before we give up, thereis one more modulus to try. We tried eliminating the “7” and the “x2” terms; canwe eliminate the 2n term instead? Yes, by choosing, say, mod 2. Then we get
0 + 7 = x2(mod 2)
when n > 0, and
1 + 7 = x2(mod 2)
when n = 0. This is not too bad as we have almost eliminated the role of ncompletely. But it still doesn’t work, as the x2 term on the right-hand side couldbe 0 or 1, so we haven’t really excluded any possibilities. To restrict the values ofx2, we have to choose a different modulus. With this line of thought - to restrictthe values on the right-hand-side - one now thinks to try the modulus 4 instead of2:
2n + 7 = x2 (mod 4).
In other words, we have
0 + 3 = x2 (mod 4) when n > 1(3)
2 + 3 = x2 (mod 4) when n = 1(4)
1 + 3 = x2 (mod 4) when n = 0.(5)
Because x2 must be 0 (mod 4) or 1 (mod 4), possibility (3) is eliminated. Thismeans n can only be 0 or 1. A quick check shows then that only n = 1 can work,and x must be +3 or −3.
The main idea, when solving Diophantine equations of the form “find all solutions”,is to eliminate all but a finite number of possibilities. This is another reason why the(mod 7) and (mod x) would not work; for if they did, they would have eliminatedall the cases, unlike the (mod 4) approach, which eliminated all but a handful.
Exercise 2.2. Find the largest positive integer n such that n3 + 100 is divisibleby n + 10. Hint: use (mod n + 10). Get rid of the n by using the fact thatn = −10(mod n + 10).
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Sums of powers
Problem 2.5 (Hajos et al. 1963, p. 74). Prove that for any non-negative integer n, the number 1n + 2n + 3n + 4n is divisible by 5if and only if n is not divisible by 4.
This problem looks a bit daunting at first: equations like the above may remind oneof Fermat’s last theorem, which is notorious for its insolvability. But our questionis much milder. We wish to show that a certain number is (or is not) divisibleby 5. Unless a direct factorisation is evident, we will have to use the modulusapproach. (i.e. show that 1n + 2n + 3n + 4n = 0 (mod 5) for n not divisible by 4,and 1n + 2n + 3n + 4n �= 0 (mod 5) otherwise.)
Because we are using such small numbers, we can evaluate some of the values of1n + 2n + 3n + 4n (mod 5) manually. The best way to do this is to work out1n (mod 5), 2n (mod 5), 3n (mod 5), and 4n (mod 5) individually before adding:
n 1n 2n 3n 4n 1n + 2n + 3n + 4n
0 1 1 1 1 41 1 2 3 4 02 1 4 4 1 03 1 3 2 4 04 1 1 1 1 45 1 2 3 4 06 1 4 4 1 07 1 3 2 4 08 1 1 1 1 4
Now it is obvious that some periodicity is evident. In fact 1n, 2n, 3n and 4n areall periodic with period 4. To prove this conjecture, we can just fiddle with thedefinition of periodicity.
Take 3n, for example. Saying that this is periodic with period 4 just means that
3n+4 = 3n (mod 5).
But this is easy to prove, as
3n+4 = 3n × 81 = 3n (mod 5)
because 81 = 1mod 5.
Similarly we can prove 1n,2n, and 4n are periodic with period 4. This means that1n + 2n + 3n + 4n is periodic with period 4. This in turn implies that we only needto prove our question for n = 0, 1, 2, 3, because periodicity will take care of all theother cases of n. But we have already shown the question to be true in these cases
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(see the above table). So we are done. (By the way, there is a more elementarymethod available if we assume that n is odd: simply pair up and cancel terms.)
Whenever trying to prove equations involving a parameter (in this case n), period-icity is always handy, as one no longer needs to check all values of the parameter toverify the equation. Checking one period (e.g. n = 0, 1, 2, and 3) will be sufficient.
Incidentally, the above question can be generalized as follows:
Theorem 2.1. If p is a prime, then 1n + 2n + 3n + . . .+ (p− 1)n is always divisibleby p except when n is divisible by (p − 1).
This theorem is a bit more complicated, and it involves some manipulation ofresidue classes, as well as knowledge of generators. Here is a quick sketch for thosewho have studied elementary number theory in some depth:
Proof. If n is not divisible by p − 1, and a is a generator of p, then
an �= 1 (mod p).
an(1n + 2n + 3n + . . . + (p − 1)n) = an + (2a)n + (3a)n + . . . + ((p − 1)a)n
1n + 2n + 3n + . . . + (p − 1)n (mod p)
because the set of residues {a, 2a, . . . , (p − 1)a} is equal to the set of residues{1, 2, . . . , p − 1} modulo p. So denoting our sum 1n + 2n + 3n + . . . + (p − 1)n
by X , we have shown thatanX = X (mod p)
so X must be 0 (mod p), as desired. �Exercise 2.3. Show that the equation x4 + 131 = 3y4 has no solutions if x and yare integers.
Now we turn to a trickier problem concerning sums of powers.
Problem 2.6 (Schklarsky et al., 1962, p. 14). (**) Let k, n benatural numbers with k odd. Prove that the sum 1k +2k + . . .+nk
is divisible by 1 + 2 + . . . + n.
This question, by the way, is a standard exercise in Bernoulli polynomials (or someastute applications of the Remainder Theorem), an interesting portion of mathe-matics that has many applications. But without the sledge-hammer of Bernoullipolynomials (or the Riemann ζ function) we’ll just have to use plain old numbertheory.
First of all, we know that 1+2+ . . .+n can also be written in the form n(n+1)/2.Which form shall we use? The former is more aesthetic, but a bit useless in a
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divisibility question. (It is always easier if the divisor is expressed as a product,rather than a sum.) It might have been useful if there was some nice factorisationof 1k + 2k + .. + nk which involved 1 + 2 + . . . + n, but there isn’t (at least, notan obvious one). If there was some way to relate divisibility by 1 + 2 + . . . + n todivisibility by 1 + 2 + . . . + (n + 1) then induction might be a way to go, but thatdoesn’t seem likely either. So we will try the n(n + 1)/2 formulation instead.
So, using modular arithmetic (which is the most flexible way to prove that onenumber divides another), our objective is to show that
1k + 2k + . . . + nk = 0 (mod n(n + 1)/2).
Let us ignore for the moment the ”2” in the n(n+1)/2. Then we are trying to provesomething of the form
(factor 1) × (factor 2)|(expression).
If the two factors are coprime, then our objective is equivalent to proving both of
(factor 1)|(expression) and (factor 2)|(expression)
separately. This should be simpler to prove: it is easier to prove divisibility if thedivisors are smaller. But there is an annoying “2” in the way. To deal with that wewill just break up into cases, depending on whether n is even or odd1. The cases arequite similar and I will only do the case when n is even. In this case we can writen = 2m (so as to avoid staring at messy “n/2” terms in the following equations -little housekeeping things like this help a solution run smoothly.) Replacing all then’s by 2m’s, we have to prove
1k + 2k + . . . + (2m)k = 0 (mod m(2m + 1)),
but since m and 2m + 1 are coprime, this is equivalent to proving
1k + 2k + . . . + (2m)k = 0 (mod 2m + 1)
and1k + 2k + . . . + (2m)k = 0 (mod m).
Let’s tackle the (mod 2m+1) part first. It is quite similar to Problem 2.5 but is a biteasier, because we know that k is odd. Using the modulus 2m+1, 2m is equivalentto −1, 2m−1 is equivalent to −2, and so on, so our expression 1k +2k + . . .+(2m)k
1k + 2k + . . . + (m)k + (−m)k + . . . + (−2)k + (−1)k (mod 2m + 1).
We have done this so that we can do some nice cancelling. k is odd, so (−1)k isequal to −1. Therefore (−a)k = −ak. The upshot of this is that the above sumcan be pairwise cancelled: 2k and (−2)k will cancel, 3k and (−3)k will cancel, etc,leaving 0 (mod 2m + 1), as desired.
Now we have to do the (mod m) part: i.e. we have to show
1k+2k+3k+. . .+(m−1)k+(m)k +(m+1)k+. . .+(2m−1)k+(2m)k = 0 (mod m).
1Another way is to multiply both sides by two, so that we now want to prove 2(1k + 2k +. . . + nk = 0 (mod n(n + 1)). This ends up being more or less equivalent to the approach givenbelow.
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But we are working modulo m, so some of the above terms can be simplified. mand 2m are both equivalent to 0 (mod m), and m + 1 is equivalent to 1, m + 2 isequivalent to 2, and so on. So the above summation simplifies to
1k + 2k + 3k + . . . + (m − 1)k + 0k + 1k + . . . + (m − 1)k + 0 (mod m)
But several terms appear twice, so recombining (and ditching the 0s) we get
2(1k + 2k + 3k + . . . + (m − 1)k) (mod m)
Now we can almost do the same thing as for the (mod 2m+1) case, except there isa small hitch when m is even. If m is odd, we can reformulate the above expressionas
2(1k +2k +3k + . . .+((m−1)/2)k +(−(m−1)/2)k + . . .+(−2)k +(−1)k) (mod m)
and do the same procedure of cancellation as before. But if m is even (so m = 2p,say) there is a middle term, pk, which doesn’t cancel with anything. In other words,in this case the expression does not collapse to 0 immediately, but instead cancelsto
2pk(mod 2p)
But this, of course, is equal to 0. Regardless of whether m is odd or even, we haveproved that 1k + 2k + 3k + . . . + nk is divisible by n(n + 1)/2 if n is even.
Exercise 2.4. Complete the proof of the above problem by working out whathappens when n is odd.
Now let’s turn to a special type of “sums of powers” problem, namely sums ofreciprocals.
Problem 2.7 (Schklarsky et al., 1962, p. 17). Let p be a primenumber greater than 3. Show that the numerator of the (reduced)fraction
1/1 + 1/2 + 1/3 + . . . + 1/(p − 1)is divisible by p2. For example, when p is 5, the fraction is 1/1 +1/2 + 1/3 + 1/4 = 25/12, and the numerator is obviously divisibleby 52.
This question is a “Prove that” question, not a “Find a” or “Show there exists”question, so it shouldn’t be completely impossible. However, we have to provesomething about a numerator of a reduced fraction - not something easily dealtwith! This numerator will need to be transformed into something more standard,like an algebraic expression, so that we can manipulate it better. Also, the questiondoes not just need divisibility by a prime, it needs divisibility by the square of aprime. This is significantly harder. We would like to somehow reduce the problemto mere prime divisibility to make the problem more solvable.
So by looking at the shape of the question, we have the following objectives to keepin mind:
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(a) Express the numerator as a mathematical expression, so that we can ma-nipulate it.
(b) Aim to reduce the problem from a p2-divisiblity problem to somethingsimpler, perhaps a p-divisibility problem.
Let’s tackle (a) first. First of all, we can get a numerator easily, but not the reducednumerator necessarily. By adding up the fractions under a common denominatorwe get
2 × 3 × . . . × (p − 1) + 1 × 3 × . . . × (p − 1) + . . . + 1 × 2 × 3 × . . . × (p − 2)(p − 1)!
Now suppose that we can manage to prove that this numerator is divisible by p2.How does this help us prove that the reduced numerator is also divisible by p2? Well,what is the reduced numerator? It is the original numerator after some cancellationwith the denominator. Can cancelling destroy the property of p2-divisibility? Yes,if a multiple of p is cancelled. But multiples of p cannot be cancelled, becausethe denominator is coprime to p (p is prime, and (p − 1)! can be expressed as aproduct of numbers less than p). Aha! This means that we only need to prove thatthe ugly-looking numerator above is divisible by p2. This is better than the othernumerator because now we have an equation to solve:
2 × 3 × . . . × (p − 1) + 1 × 3 × . . . × (p − 1) + . . .
+1 × 2 × 3 × . . . × (p − 2) = 0(mod p2).
(Again, we have switched over to modular arithmetic, which is usually the bestway to show that one number divides another. However, if the question involvesmore than one divisibility, e.g. something involving all divisors of a certain number,other techniques are sometimes better.)
Although we have got an equation now, it is a mess. Our next task is to simplify it.What we have now on the left-hand side is an indefinite sum of indefinite products.(Indefinite just means that there are “dot dot dots” in the expression.) However, wecan represent the infinite products more neatly. Each infinite product is basicallythe numbers from 1 to p − 1 multiplied together, except for one number, say i,which is between 1 and p− 1. This can be expressed more compactly as (p− 1)!/i;it is legitimate to divide by i modulo p2 because i is coprime to p2. So now ourobjective is now to prove
+ . . . +(p − 1)!p − 1
= 0 (mod p2).
We factorize this to get
(6) (p − 1)![11
]= 0 (mod p2).
(Remember that we are dealing with modular arithmetic, so that a number like 1/2will be equivalent to an integer. For example, 1/2 = 6/2 = 3 (mod 5).)
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Now look at what we have: something of the form
(factor) × (factor) = 0 (mod p2).
If it were not for the modular arithmetic, then we could quickly say that one ofthe factors is 0. With modular arithmetic, we can say nearly the same thing, butwe have to be careful. Luckily, the first factor, (p − 1)!, is coprime to p2 (because(p − 1)! is coprime to p) so we can divide it out. The upshot of this is that (6) isequivalent to
p − 1= 0 (mod p2)
(Note that this looks very similar to our original question, the only difference beingthat we are considering the entire fraction, not just the numerator of it. But onecannot just jump from one form to another without care. The above complicationswere necessary.)
Now we have reduced the question to proving a rather benign-looking modulararithmetic equation. But where to go on from here? Perhaps an example will help.Let’s take the same example as the one given in the question: namely, p = 5. Wehave
= 1 + 13 + 17 + 19 (mod 25)
= 0 (mod 25)
as desired. But why does this work? The numbers 1, 13, 17, and 19 seem to berandom, but “magically” add up to the right amount. Perhaps it is a fluke. Let’stry p = 7.
= 1 + 25 + 33 + 37 + 10 + 41(mod 49)
= 0 (mod 49)
This has the same “flukiness” about it. How does this work? It is not clear howeverything manages to cancel out modulo p2. Perhaps, keeping objective (b) inmind, we can prove it (mod p) first, i.e. let us first prove
p − 1= 0 (mod p)
If nothing else, it will give us something to do. (Besides, if we can’t solve this(mod p) problem, there is no way that we will be able to solve the (mod p2) prob-lem.)
It turns out that the simpler problem (7) is much easier to work out. For example,when p is 5, we have
= 1 + 3 + 2 + 4 (mod 5)
= 0 (mod 5)
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while when p is 7 we have
(mod 7) = 1 + 4 + 5 + 2 + 3 + 6 (mod 7)
= 1 + 2 + 3 + 4 + 5 + 6 (mod 7)
= 0 (mod 7).
Now we have a pattern emerging: the reciprocals 1/1, 1/2, . . . , 1/(p − 1) (mod p)seem to cover all the residues 1, 2, . . . , (p − 1) (mod p) exactly once. For example,in the above equation with p = 7, the numbers 1 + 4 + 5 + 2 + 3 + 6 re-arrange toform 1 + 2 + 3 + 4 + 5 + 6, which is 0. To check a lengthier example, mod 11 yields
+ . . . +111
= 1 + 6 + 4 + 3 + 9 + 2 + 8 + 7 + 5 + 10 (mod 11)
= 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 (mod 11)= 0.
This tactic, showing that the reciprocal numbers can be rearranged in this orderlyfashion, works neatly for (mod p), but it doesn’t generalize easily to (mod p2).Instead of floundering around trying to fit a square block into a round hole (althoughit can be done if you push hard enough), it’s better to find a block that is moreround. So what we have to do now is find another proof of the fact that 1
13 + . . . + 1
p−1 = 0 (mod p); one that generalizes, at least partially, to the (mod p2)case.
Now it is time to use experience with these sorts of problems. For example, if weare fresh from solving Problem 2.6, we know that symmetry, or anti-symmetry canbe exploited, especially in modular arithmetic. In the problem of proving (7) wecan make the sum more anti-symmetric by replacing p− 1 with −1, p− 2 with −2,and so forth, to get
+ . . . +1−3
And now we can pair off and cancel easily (there is no “middle term” that doesn’tpair off, as p is an odd prime). Can we do the same in (mod p2)?
The answer is “sort of”. When we solved the problem (mod p), we paired off 1/1and 1/(p − 1), 1/2 and 1/(p − 2), and so forth. When we try the same pairing in(mod p2), what we get now is this:
p − 2) + . . . + (
1 × (p − 1)+
2 × (p − 2)+ . . . +
(p − 1)/2 × (p + 1)/2
12 × (p − 2)
Now this, at first, looks like a complication rather than a simplification. But wehave gained a very important factor of p on the right-hand side. Now, instead of
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having to prove that(expression) = 0 (mod p2)
we now have to prove something like
(p × expression) = 0 (mod p2)
which is equivalent to proving something of the form
(expression) = 0 (mod p).
In other words, we are now reduced to a (mod p) question instead of a (mod p2)question. Now we have achieved objective (b) given above: reduced the questionto that of a smaller modulus, which is well worth the slight increase in complexity.
And it is quickly seen that the apparent increase in expression complexity is justillusionary, as the (mod p) can get rid of a lot more terms than (mod p2) can. Now,we only have to show that
11 × (p − 1)
1(p − 1)/2 × (p + 1)/2
= 0 (mod p).
But p − 1 is equivalent to −1 (mod p), p − 2 is equivalent to −2 (mod p), and soforth, so the equation reduces to
−22+ . . . +
1−((p − 1)/2)2
= 0 (mod p),
or equivalently112
((p − 1)/2)2= 0 (mod p).
This equation is not too bad, except that the series on the left-hand side ends inan obscure spot (at 1/((p − 1)/2)2, rather than the more natural 1/(p − 1)2, forexample). But we can “double up”, making use of the fact that (−a)2 = a2 to get
((p − 1)/2)2
(−3)2+ . . . +
1(−(p − 1)/2)2
So proving that 112 + . . . + 1
((p−1)/2)2 is equal to 0 (mod p) would be equivalentto proving that 1/12 + . . . + 1/(p − 1)2 is equal to 0 (mod p). The latter is moredesirable because of its more symmetrical format. (Symmetry is nice to keep -until it can be used to its full effect - while anti-symmetry, like what we did on theprevious page, is nice to cancel.)
So now we only have to prove
(p − 1)2= 0 (mod p).
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to prove the whole question. This is tactically a much better formulation than theoriginal one involving numerators and p2 divisibility, which is a lot stronger (henceharder to prove) than mere p-divisiblity.
So now we have achieved all our tactical goals, and reduced the question downto decent proportions. But where do we go from here? Well, the question seemsvery closely related to the other problem (7) that we were considering. But we arenot going around in circles. Our current goal (8) will imply the original question,whereas (7) was just a side-problem, a simpler version of the question. Rather thangoing around in circles, we are going around in spirals, heading towards a solution.We have already proved (7): can we prove (8) by the same methods?
Well, we are in luck, because there were two methods we used to solve (7): one wasthe rearrangement of reciprocals, and the other was cancellation of pairs. Cancella-tion of pairs unfortunately does not work as well with (8) as it did with (7), mainlybecause of the squares in the denominators, which produce symmetry rather thananti-symmetry. But the rearrangement method is promising. Take, yet again, theexample of p = 5 (so we can reuse some previous work):
= 12 + 32 + 22 + 42 (mod 5)
= 12 + 22 + 32 + 42 (mod 5)= 0
The way it works when p = 5 shows the way for the general case. Based on theabove examples it looks like the residue classes 1/1, 1/2, 1/3, . . . , 1/(p− 1) (mod p)are just a rearrangement of the numbers 1, 2, 3, . . . , (p− 1) (mod p); a proof of thisfact will be given at the end of this discussion. Thus we can say that the numbers1/12, 1/22, . . . , 1/(p−1)2 are just rearrangements of the numbers 12, 22, 32, . . . , (p−1)2. In other words:
(p − 1)2= 12 + 22 + 32 + . . . + (p − 1)2 (mod p).
This is an easier expression to deal with, because we have removed the reciprocals,which are a nuisance when trying to sum things. In fact, we can now get rid of thesum altogether, using the standard formula
12 + 22 + . . . + n2 =n(n + 1)(2n + 1)
(which is easily proven by induction), so we have reduced (8) to just proving that
(p − 1)p(2p− 1)6
And one can easily show that this is true when p is a prime greater than 3 (because(p − 1)(2p − 1)/6 is an integer in this case).
So that’s it. We keep reducing the equation to simpler and simpler formulations,until it just collapses into nothing. A bit of a long haul, but sometimes it is theonly way to resolve these very complicated questions: step-by-step reduction.
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Now for the proof that the reciprocals 1/1, 1/2, . . . , 1/(p− 1) (mod p) are a permu-tation of the numbers 1, 2, . . . , (p − 1) (mod p): This is equivalent to saying thateach nonzero residue (mod p) is the reciprocal of one and only one nonzero residue(mod p), which is obvious.
Exercise 2.5. Let n ≥ 2 be an integer. Show that 11 + 1
2 + . . .+ 1n is not an integer.
(You will need Bertrand’s postulate (actually a theorem), which shows that givenany positive integer n there is at least one prime between n and 2n.)
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