• PRO Courses Guides New Tech Help Pro Expert Videos About wikiHow Pro Upgrade Sign In
  • EDIT Edit this Article
  • EXPLORE Tech Help Pro About Us Random Article Quizzes Request a New Article Community Dashboard This Or That Game Popular Categories Arts and Entertainment Artwork Books Movies Computers and Electronics Computers Phone Skills Technology Hacks Health Men's Health Mental Health Women's Health Relationships Dating Love Relationship Issues Hobbies and Crafts Crafts Drawing Games Education & Communication Communication Skills Personal Development Studying Personal Care and Style Fashion Hair Care Personal Hygiene Youth Personal Care School Stuff Dating All Categories Arts and Entertainment Finance and Business Home and Garden Relationship Quizzes Cars & Other Vehicles Food and Entertaining Personal Care and Style Sports and Fitness Computers and Electronics Health Pets and Animals Travel Education & Communication Hobbies and Crafts Philosophy and Religion Work World Family Life Holidays and Traditions Relationships Youth
  • Browse Articles
  • Learn Something New
  • Quizzes Hot
  • This Or That Game New
  • Train Your Brain
  • Explore More
  • Support wikiHow
  • About wikiHow
  • Log in / Sign up
  • Education and Communications

How to Solve Any Physics Problem

Last Updated: July 21, 2023 Fact Checked

This article was co-authored by Sean Alexander, MS . Sean Alexander is an Academic Tutor specializing in teaching mathematics and physics. Sean is the Owner of Alexander Tutoring, an academic tutoring business that provides personalized studying sessions focused on mathematics and physics. With over 15 years of experience, Sean has worked as a physics and math instructor and tutor for Stanford University, San Francisco State University, and Stanbridge Academy. He holds a BS in Physics from the University of California, Santa Barbara and an MS in Theoretical Physics from San Francisco State University. This article has been fact-checked, ensuring the accuracy of any cited facts and confirming the authority of its sources. This article has been viewed 324,420 times.

Baffled as to where to begin with a physics problem? There is a very simply and logical flow process to solving any physics problem.

Step 1 Calm down.

  • Ask yourself if your answers make sense. If the numbers look absurd (for example, you get that a rock dropped off a 50-meter cliff moves with the speed of only 0.00965 meters per second when it hits the ground), you made a mistake somewhere.
  • Don't forget to include the units into your answers, and always keep track of them. So, if you are solving for velocity and get your answer in seconds, that is a sign that something went wrong, because it should be in meters per second.
  • Plug your answers back into the original equations to make sure you get the same number on both sides.

Step 10 Put a box, circle, or underline your answer to make your work neat.

Community Q&A

Community Answer

  • Many people report that if they leave a problem for a while and come back to it later, they find they have a new perspective on it and can sometimes see an easy way to the answer that they did not notice before. Thanks Helpful 249 Not Helpful 47
  • Try to understand the problem first. Thanks Helpful 186 Not Helpful 51
  • Remember, the physics part of the problem is figuring out what you are solving for, drawing the diagram, and remembering the formulae. The rest is just use of algebra, trigonometry, and/or calculus, depending on the difficulty of your course. Thanks Helpful 115 Not Helpful 34

first step in solving physics problems

  • Physics is not easy to grasp for many people, so do not get bent out of shape over a problem. Thanks Helpful 100 Not Helpful 24
  • If an instructor tells you to draw a free body diagram, be sure that that is exactly what you draw. Thanks Helpful 88 Not Helpful 24

Things You'll Need

  • A Writing Utensil (preferably a pencil or erasable pen of sorts)
  • Calculator with all the functions you need for your exam
  • An understanding of the equations needed to solve the problems. Or a list of them will suffice if you are just trying to get through the course alive.

You Might Also Like

Convert Kelvin to Fahrenheit or Celsius

Expert Interview

first step in solving physics problems

Thanks for reading our article! If you’d like to learn more about teaching, check out our in-depth interview with Sean Alexander, MS .

  • ↑ https://iopscience.iop.org/article/10.1088/1361-6404/aa9038
  • ↑ https://physics.wvu.edu/files/d/ce78505d-1426-4d68-8bb2-128d8aac6b1b/expertapproachtosolvingphysicsproblems.pdf
  • ↑ https://www.brighthubeducation.com/science-homework-help/42596-tips-to-choosing-the-correct-physics-formula/

About This Article

Sean Alexander, MS

  • Send fan mail to authors

Reader Success Stories

Aayush P.

Dec 6, 2023

Did this article help you?

first step in solving physics problems

Monish Shetty

Sep 30, 2016

U. Pathum

Oct 9, 2017

Komal Verma

Komal Verma

Dec 6, 2017

Lowella Tabbert

Lowella Tabbert

Jun 7, 2022

Am I a Narcissist or an Empath Quiz

Featured Articles

Make Blueberry Pancakes

Trending Articles

How to Take the Perfect Thirst Trap

Watch Articles

Wrap a Round Gift

  • Terms of Use
  • Privacy Policy
  • Do Not Sell or Share My Info
  • Not Selling Info

Don’t miss out! Sign up for

wikiHow’s newsletter

1 Units and Measurement

1.7 solving problems in physics, learning objectives.

By the end of this section, you will be able to:

  • Describe the process for developing a problem-solving strategy.
  • Explain how to find the numerical solution to a problem.
  • Summarize the process for assessing the significance of the numerical solution to a problem.

A photograph of a student’s hand, working on a problem with an open textbook, a calculator, and an eraser.

Figure 1.13 Problem-solving skills are essential to your success in physics. (credit: “scui3asteveo”/Flickr)

Problem-solving skills are clearly essential to success in a quantitative course in physics. More important, the ability to apply broad physical principles—usually represented by equations—to specific situations is a very powerful form of knowledge. It is much more powerful than memorizing a list of facts. Analytical skills and problem-solving abilities can be applied to new situations whereas a list of facts cannot be made long enough to contain every possible circumstance. Such analytical skills are useful both for solving problems in this text and for applying physics in everyday life.

As you are probably well aware, a certain amount of creativity and insight is required to solve problems. No rigid procedure works every time. Creativity and insight grow with experience. With practice, the basics of problem solving become almost automatic. One way to get practice is to work out the text’s examples for yourself as you read. Another is to work as many end-of-section problems as possible, starting with the easiest to build confidence and then progressing to the more difficult. After you become involved in physics, you will see it all around you, and you can begin to apply it to situations you encounter outside the classroom, just as is done in many of the applications in this text.

Although there is no simple step-by-step method that works for every problem, the following three-stage process facilitates problem solving and makes it more meaningful. The three stages are strategy, solution, and significance. This process is used in examples throughout the book. Here, we look at each stage of the process in turn.

Strategy is the beginning stage of solving a problem. The idea is to figure out exactly what the problem is and then develop a strategy for solving it. Some general advice for this stage is as follows:

  • Examine the situation to determine which physical principles are involved . It often helps to draw a simple sketch at the outset. You often need to decide which direction is positive and note that on your sketch. When you have identified the physical principles, it is much easier to find and apply the equations representing those principles. Although finding the correct equation is essential, keep in mind that equations represent physical principles, laws of nature, and relationships among physical quantities. Without a conceptual understanding of a problem, a numerical solution is meaningless.
  • Make a list of what is given or can be inferred from the problem as stated (identify the “knowns”) . Many problems are stated very succinctly and require some inspection to determine what is known. Drawing a sketch can be very useful at this point as well. Formally identifying the knowns is of particular importance in applying physics to real-world situations. For example, the word stopped means the velocity is zero at that instant. Also, we can often take initial time and position as zero by the appropriate choice of coordinate system.
  • Identify exactly what needs to be determined in the problem (identify the unknowns) . In complex problems, especially, it is not always obvious what needs to be found or in what sequence. Making a list can help identify the unknowns.
  • Determine which physical principles can help you solve the problem . Since physical principles tend to be expressed in the form of mathematical equations, a list of knowns and unknowns can help here. It is easiest if you can find equations that contain only one unknown—that is, all the other variables are known—so you can solve for the unknown easily. If the equation contains more than one unknown, then additional equations are needed to solve the problem. In some problems, several unknowns must be determined to get at the one needed most. In such problems it is especially important to keep physical principles in mind to avoid going astray in a sea of equations. You may have to use two (or more) different equations to get the final answer.

The solution stage is when you do the math. Substitute the knowns (along with their units) into the appropriate equation and obtain numerical solutions complete with units . That is, do the algebra, calculus, geometry, or arithmetic necessary to find the unknown from the knowns, being sure to carry the units through the calculations. This step is clearly important because it produces the numerical answer, along with its units. Notice, however, that this stage is only one-third of the overall problem-solving process.

Significance

After having done the math in the solution stage of problem solving, it is tempting to think you are done. But, always remember that physics is not math. Rather, in doing physics, we use mathematics as a tool to help us understand nature. So, after you obtain a numerical answer, you should always assess its significance:

  • Check your units. If the units of the answer are incorrect, then an error has been made and you should go back over your previous steps to find it. One way to find the mistake is to check all the equations you derived for dimensional consistency. However, be warned that correct units do not guarantee the numerical part of the answer is also correct.
  • Check the answer to see whether it is reasonable. Does it make sense? This step is extremely important: –the goal of physics is to describe nature accurately. To determine whether the answer is reasonable, check both its magnitude and its sign, in addition to its units. The magnitude should be consistent with a rough estimate of what it should be. It should also compare reasonably with magnitudes of other quantities of the same type. The sign usually tells you about direction and should be consistent with your prior expectations. Your judgment will improve as you solve more physics problems, and it will become possible for you to make finer judgments regarding whether nature is described adequately by the answer to a problem. This step brings the problem back to its conceptual meaning. If you can judge whether the answer is reasonable, you have a deeper understanding of physics than just being able to solve a problem mechanically.
  • Check to see whether the answer tells you something interesting. What does it mean? This is the flip side of the question: Does it make sense? Ultimately, physics is about understanding nature, and we solve physics problems to learn a little something about how nature operates. Therefore, assuming the answer does make sense, you should always take a moment to see if it tells you something about the world that you find interesting. Even if the answer to this particular problem is not very interesting to you, what about the method you used to solve it? Could the method be adapted to answer a question that you do find interesting? In many ways, it is in answering questions such as these that science progresses.

The three stages of the process for solving physics problems used in this book are as follows:

  • Strategy : Determine which physical principles are involved and develop a strategy for using them to solve the problem.
  • Solution : Do the math necessary to obtain a numerical solution complete with units.
  • Significance : Check the solution to make sure it makes sense (correct units, reasonable magnitude and sign) and assess its significance.

Conceptual Questions

What information do you need to choose which equation or equations to use to solve a problem?

What should you do after obtaining a numerical answer when solving a problem?

Check to make sure it makes sense and assess its significance.

Additional Problems

Consider the equation y = mt +b , where the dimension of y is length and the dimension of t is time, and m and b are constants. What are the dimensions and SI units of (a) m and (b) b ?

Consider the equation [latex] s={s}_{0}+{v}_{0}t+{a}_{0}{t}^{2}\text{/}2+{j}_{0}{t}^{3}\text{/}6+{S}_{0}{t}^{4}\text{/}24+c{t}^{5}\text{/}120, [/latex] where s is a length and t is a time. What are the dimensions and SI units of (a) [latex] {s}_{0}, [/latex] (b) [latex] {v}_{0}, [/latex] (c) [latex] {a}_{0}, [/latex] (d) [latex] {j}_{0}, [/latex] (e) [latex] {S}_{0}, [/latex] and (f) c ?

a. [latex] [{s}_{0}]=\text{L} [/latex] and units are meters (m); b. [latex] [{v}_{0}]={\text{LT}}^{-1} [/latex] and units are meters per second (m/s); c. [latex] [{a}_{0}]={\text{LT}}^{-2} [/latex] and units are meters per second squared (m/s 2 ); d. [latex] [{j}_{0}]={\text{LT}}^{-3} [/latex] and units are meters per second cubed (m/s 3 ); e. [latex] [{S}_{0}]={\text{LT}}^{-4} [/latex] and units are m/s 4 ; f. [latex] [c]={\text{LT}}^{-5} [/latex] and units are m/s 5 .

(a) A car speedometer has a 5% uncertainty. What is the range of possible speeds when it reads 90 km/h? (b) Convert this range to miles per hour. Note 1 km = 0.6214 mi.

A marathon runner completes a 42.188-km course in 2 h, 30 min, and 12 s. There is an uncertainty of 25 m in the distance traveled and an uncertainty of 1 s in the elapsed time. (a) Calculate the percent uncertainty in the distance. (b) Calculate the percent uncertainty in the elapsed time. (c) What is the average speed in meters per second? (d) What is the uncertainty in the average speed?

a. 0.059%; b. 0.01%; c. 4.681 m/s; d. 0.07%, 0.003 m/s

The sides of a small rectangular box are measured to be 1.80 ± 0.1 cm, 2.05 ± 0.02 cm, and 3.1 ± 0.1 cm long. Calculate its volume and uncertainty in cubic centimeters.

When nonmetric units were used in the United Kingdom, a unit of mass called the pound-mass (lbm) was used, where 1 lbm = 0.4539 kg. (a) If there is an uncertainty of 0.0001 kg in the pound-mass unit, what is its percent uncertainty? (b) Based on that percent uncertainty, what mass in pound-mass has an uncertainty of 1 kg when converted to kilograms?

a. 0.02%; b. 1×10 4 lbm

The length and width of a rectangular room are measured to be 3.955 ± 0.005 m and 3.050 ± 0.005 m. Calculate the area of the room and its uncertainty in square meters.

A car engine moves a piston with a circular cross-section of 7.500 ± 0.002 cm in diameter a distance of 3.250 ± 0.001 cm to compress the gas in the cylinder. (a) By what amount is the gas decreased in volume in cubic centimeters? (b) Find the uncertainty in this volume.

a. 143.6 cm 3 ; b. 0.2 cm 3 or 0.14%

Challenge Problems

The first atomic bomb was detonated on July 16, 1945, at the Trinity test site about 200 mi south of Los Alamos. In 1947, the U.S. government declassified a film reel of the explosion. From this film reel, British physicist G. I. Taylor was able to determine the rate at which the radius of the fireball from the blast grew. Using dimensional analysis, he was then able to deduce the amount of energy released in the explosion, which was a closely guarded secret at the time. Because of this, Taylor did not publish his results until 1950. This problem challenges you to recreate this famous calculation. (a) Using keen physical insight developed from years of experience, Taylor decided the radius r of the fireball should depend only on time since the explosion, t , the density of the air, [latex] \rho , [/latex] and the energy of the initial explosion, E . Thus, he made the educated guess that [latex] r=k{E}^{a}{\rho }^{b}{t}^{c} [/latex] for some dimensionless constant k and some unknown exponents a , b , and c . Given that [E] = ML 2 T –2 , determine the values of the exponents necessary to make this equation dimensionally consistent. ( Hint : Notice the equation implies that [latex] k=r{E}^{\text{−}a}{\rho }^{\text{−}b}{t}^{\text{−}c} [/latex] and that [latex] [k]=1. [/latex]) (b) By analyzing data from high-energy conventional explosives, Taylor found the formula he derived seemed to be valid as long as the constant k had the value 1.03. From the film reel, he was able to determine many values of r and the corresponding values of t . For example, he found that after 25.0 ms, the fireball had a radius of 130.0 m. Use these values, along with an average air density of 1.25 kg/m 3 , to calculate the initial energy release of the Trinity detonation in joules (J). ( Hint : To get energy in joules, you need to make sure all the numbers you substitute in are expressed in terms of SI base units.) (c) The energy released in large explosions is often cited in units of “tons of TNT” (abbreviated “t TNT”), where 1 t TNT is about 4.2 GJ. Convert your answer to (b) into kilotons of TNT (that is, kt TNT). Compare your answer with the quick-and-dirty estimate of 10 kt TNT made by physicist Enrico Fermi shortly after witnessing the explosion from what was thought to be a safe distance. (Reportedly, Fermi made his estimate by dropping some shredded bits of paper right before the remnants of the shock wave hit him and looked to see how far they were carried by it.)

The purpose of this problem is to show the entire concept of dimensional consistency can be summarized by the old saying “You can’t add apples and oranges.” If you have studied power series expansions in a calculus course, you know the standard mathematical functions such as trigonometric functions, logarithms, and exponential functions can be expressed as infinite sums of the form [latex] \sum _{n=0}^{\infty }{a}_{n}{x}^{n}={a}_{0}+{a}_{1}x+{a}_{2}{x}^{2}+{a}_{3}{x}^{3}+\cdots , [/latex] where the [latex] {a}_{n} [/latex] are dimensionless constants for all [latex] n=0,1,2,\cdots [/latex] and x is the argument of the function. (If you have not studied power series in calculus yet, just trust us.) Use this fact to explain why the requirement that all terms in an equation have the same dimensions is sufficient as a definition of dimensional consistency. That is, it actually implies the arguments of standard mathematical functions must be dimensionless, so it is not really necessary to make this latter condition a separate requirement of the definition of dimensional consistency as we have done in this section.

Since each term in the power series involves the argument raised to a different power, the only way that every term in the power series can have the same dimension is if the argument is dimensionless. To see this explicitly, suppose [x] = L a M b T c . Then, [x n ] = [x] n = L an M bn T cn . If we want [x] = [x n ], then an = a, bn = b, and cn = c for all n. The only way this can happen is if a = b = c = 0.

  • OpenStax University Physics. Authored by : OpenStax CNX. Located at : https://cnx.org/contents/[email protected]:Gofkr9Oy@15 . License : CC BY: Attribution . License Terms : Download for free at http://cnx.org/contents/[email protected]

Footer Logo Lumen Candela

Privacy Policy

  • 4.6 Problem-Solving Strategies
  • Introduction to Science and the Realm of Physics, Physical Quantities, and Units
  • 1.1 Physics: An Introduction
  • 1.2 Physical Quantities and Units
  • 1.3 Accuracy, Precision, and Significant Figures
  • 1.4 Approximation
  • Section Summary
  • Conceptual Questions
  • Problems & Exercises
  • Introduction to One-Dimensional Kinematics
  • 2.1 Displacement
  • 2.2 Vectors, Scalars, and Coordinate Systems
  • 2.3 Time, Velocity, and Speed
  • 2.4 Acceleration
  • 2.5 Motion Equations for Constant Acceleration in One Dimension
  • 2.6 Problem-Solving Basics for One-Dimensional Kinematics
  • 2.7 Falling Objects
  • 2.8 Graphical Analysis of One-Dimensional Motion
  • Introduction to Two-Dimensional Kinematics
  • 3.1 Kinematics in Two Dimensions: An Introduction
  • 3.2 Vector Addition and Subtraction: Graphical Methods
  • 3.3 Vector Addition and Subtraction: Analytical Methods
  • 3.4 Projectile Motion
  • 3.5 Addition of Velocities
  • Introduction to Dynamics: Newton’s Laws of Motion
  • 4.1 Development of Force Concept
  • 4.2 Newton’s First Law of Motion: Inertia
  • 4.3 Newton’s Second Law of Motion: Concept of a System
  • 4.4 Newton’s Third Law of Motion: Symmetry in Forces
  • 4.5 Normal, Tension, and Other Examples of Forces
  • 4.7 Further Applications of Newton’s Laws of Motion
  • 4.8 Extended Topic: The Four Basic Forces—An Introduction
  • Introduction: Further Applications of Newton’s Laws
  • 5.1 Friction
  • 5.2 Drag Forces
  • 5.3 Elasticity: Stress and Strain
  • Introduction to Uniform Circular Motion and Gravitation
  • 6.1 Rotation Angle and Angular Velocity
  • 6.2 Centripetal Acceleration
  • 6.3 Centripetal Force
  • 6.4 Fictitious Forces and Non-inertial Frames: The Coriolis Force
  • 6.5 Newton’s Universal Law of Gravitation
  • 6.6 Satellites and Kepler’s Laws: An Argument for Simplicity
  • Introduction to Work, Energy, and Energy Resources
  • 7.1 Work: The Scientific Definition
  • 7.2 Kinetic Energy and the Work-Energy Theorem
  • 7.3 Gravitational Potential Energy
  • 7.4 Conservative Forces and Potential Energy
  • 7.5 Nonconservative Forces
  • 7.6 Conservation of Energy
  • 7.8 Work, Energy, and Power in Humans
  • 7.9 World Energy Use
  • Introduction to Linear Momentum and Collisions
  • 8.1 Linear Momentum and Force
  • 8.2 Impulse
  • 8.3 Conservation of Momentum
  • 8.4 Elastic Collisions in One Dimension
  • 8.5 Inelastic Collisions in One Dimension
  • 8.6 Collisions of Point Masses in Two Dimensions
  • 8.7 Introduction to Rocket Propulsion
  • Introduction to Statics and Torque
  • 9.1 The First Condition for Equilibrium
  • 9.2 The Second Condition for Equilibrium
  • 9.3 Stability
  • 9.4 Applications of Statics, Including Problem-Solving Strategies
  • 9.5 Simple Machines
  • 9.6 Forces and Torques in Muscles and Joints
  • Introduction to Rotational Motion and Angular Momentum
  • 10.1 Angular Acceleration
  • 10.2 Kinematics of Rotational Motion
  • 10.3 Dynamics of Rotational Motion: Rotational Inertia
  • 10.4 Rotational Kinetic Energy: Work and Energy Revisited
  • 10.5 Angular Momentum and Its Conservation
  • 10.6 Collisions of Extended Bodies in Two Dimensions
  • 10.7 Gyroscopic Effects: Vector Aspects of Angular Momentum
  • Introduction to Fluid Statics
  • 11.1 What Is a Fluid?
  • 11.2 Density
  • 11.3 Pressure
  • 11.4 Variation of Pressure with Depth in a Fluid
  • 11.5 Pascal’s Principle
  • 11.6 Gauge Pressure, Absolute Pressure, and Pressure Measurement
  • 11.7 Archimedes’ Principle
  • 11.8 Cohesion and Adhesion in Liquids: Surface Tension and Capillary Action
  • 11.9 Pressures in the Body
  • Introduction to Fluid Dynamics and Its Biological and Medical Applications
  • 12.1 Flow Rate and Its Relation to Velocity
  • 12.2 Bernoulli’s Equation
  • 12.3 The Most General Applications of Bernoulli’s Equation
  • 12.4 Viscosity and Laminar Flow; Poiseuille’s Law
  • 12.5 The Onset of Turbulence
  • 12.6 Motion of an Object in a Viscous Fluid
  • 12.7 Molecular Transport Phenomena: Diffusion, Osmosis, and Related Processes
  • Introduction to Temperature, Kinetic Theory, and the Gas Laws
  • 13.1 Temperature
  • 13.2 Thermal Expansion of Solids and Liquids
  • 13.3 The Ideal Gas Law
  • 13.4 Kinetic Theory: Atomic and Molecular Explanation of Pressure and Temperature
  • 13.5 Phase Changes
  • 13.6 Humidity, Evaporation, and Boiling
  • Introduction to Heat and Heat Transfer Methods
  • 14.2 Temperature Change and Heat Capacity
  • 14.3 Phase Change and Latent Heat
  • 14.4 Heat Transfer Methods
  • 14.5 Conduction
  • 14.6 Convection
  • 14.7 Radiation
  • Introduction to Thermodynamics
  • 15.1 The First Law of Thermodynamics
  • 15.2 The First Law of Thermodynamics and Some Simple Processes
  • 15.3 Introduction to the Second Law of Thermodynamics: Heat Engines and Their Efficiency
  • 15.4 Carnot’s Perfect Heat Engine: The Second Law of Thermodynamics Restated
  • 15.5 Applications of Thermodynamics: Heat Pumps and Refrigerators
  • 15.6 Entropy and the Second Law of Thermodynamics: Disorder and the Unavailability of Energy
  • 15.7 Statistical Interpretation of Entropy and the Second Law of Thermodynamics: The Underlying Explanation
  • Introduction to Oscillatory Motion and Waves
  • 16.1 Hooke’s Law: Stress and Strain Revisited
  • 16.2 Period and Frequency in Oscillations
  • 16.3 Simple Harmonic Motion: A Special Periodic Motion
  • 16.4 The Simple Pendulum
  • 16.5 Energy and the Simple Harmonic Oscillator
  • 16.6 Uniform Circular Motion and Simple Harmonic Motion
  • 16.7 Damped Harmonic Motion
  • 16.8 Forced Oscillations and Resonance
  • 16.10 Superposition and Interference
  • 16.11 Energy in Waves: Intensity
  • Introduction to the Physics of Hearing
  • 17.2 Speed of Sound, Frequency, and Wavelength
  • 17.3 Sound Intensity and Sound Level
  • 17.4 Doppler Effect and Sonic Booms
  • 17.5 Sound Interference and Resonance: Standing Waves in Air Columns
  • 17.6 Hearing
  • 17.7 Ultrasound
  • Introduction to Electric Charge and Electric Field
  • 18.1 Static Electricity and Charge: Conservation of Charge
  • 18.2 Conductors and Insulators
  • 18.3 Coulomb’s Law
  • 18.4 Electric Field: Concept of a Field Revisited
  • 18.5 Electric Field Lines: Multiple Charges
  • 18.6 Electric Forces in Biology
  • 18.7 Conductors and Electric Fields in Static Equilibrium
  • 18.8 Applications of Electrostatics
  • Introduction to Electric Potential and Electric Energy
  • 19.1 Electric Potential Energy: Potential Difference
  • 19.2 Electric Potential in a Uniform Electric Field
  • 19.3 Electrical Potential Due to a Point Charge
  • 19.4 Equipotential Lines
  • 19.5 Capacitors and Dielectrics
  • 19.6 Capacitors in Series and Parallel
  • 19.7 Energy Stored in Capacitors
  • Introduction to Electric Current, Resistance, and Ohm's Law
  • 20.1 Current
  • 20.2 Ohm’s Law: Resistance and Simple Circuits
  • 20.3 Resistance and Resistivity
  • 20.4 Electric Power and Energy
  • 20.5 Alternating Current versus Direct Current
  • 20.6 Electric Hazards and the Human Body
  • 20.7 Nerve Conduction–Electrocardiograms
  • Introduction to Circuits and DC Instruments
  • 21.1 Resistors in Series and Parallel
  • 21.2 Electromotive Force: Terminal Voltage
  • 21.3 Kirchhoff’s Rules
  • 21.4 DC Voltmeters and Ammeters
  • 21.5 Null Measurements
  • 21.6 DC Circuits Containing Resistors and Capacitors
  • Introduction to Magnetism
  • 22.1 Magnets
  • 22.2 Ferromagnets and Electromagnets
  • 22.3 Magnetic Fields and Magnetic Field Lines
  • 22.4 Magnetic Field Strength: Force on a Moving Charge in a Magnetic Field
  • 22.5 Force on a Moving Charge in a Magnetic Field: Examples and Applications
  • 22.6 The Hall Effect
  • 22.7 Magnetic Force on a Current-Carrying Conductor
  • 22.8 Torque on a Current Loop: Motors and Meters
  • 22.9 Magnetic Fields Produced by Currents: Ampere’s Law
  • 22.10 Magnetic Force between Two Parallel Conductors
  • 22.11 More Applications of Magnetism
  • Introduction to Electromagnetic Induction, AC Circuits and Electrical Technologies
  • 23.1 Induced Emf and Magnetic Flux
  • 23.2 Faraday’s Law of Induction: Lenz’s Law
  • 23.3 Motional Emf
  • 23.4 Eddy Currents and Magnetic Damping
  • 23.5 Electric Generators
  • 23.6 Back Emf
  • 23.7 Transformers
  • 23.8 Electrical Safety: Systems and Devices
  • 23.9 Inductance
  • 23.10 RL Circuits
  • 23.11 Reactance, Inductive and Capacitive
  • 23.12 RLC Series AC Circuits
  • Introduction to Electromagnetic Waves
  • 24.1 Maxwell’s Equations: Electromagnetic Waves Predicted and Observed
  • 24.2 Production of Electromagnetic Waves
  • 24.3 The Electromagnetic Spectrum
  • 24.4 Energy in Electromagnetic Waves
  • Introduction to Geometric Optics
  • 25.1 The Ray Aspect of Light
  • 25.2 The Law of Reflection
  • 25.3 The Law of Refraction
  • 25.4 Total Internal Reflection
  • 25.5 Dispersion: The Rainbow and Prisms
  • 25.6 Image Formation by Lenses
  • 25.7 Image Formation by Mirrors
  • Introduction to Vision and Optical Instruments
  • 26.1 Physics of the Eye
  • 26.2 Vision Correction
  • 26.3 Color and Color Vision
  • 26.4 Microscopes
  • 26.5 Telescopes
  • 26.6 Aberrations
  • Introduction to Wave Optics
  • 27.1 The Wave Aspect of Light: Interference
  • 27.2 Huygens's Principle: Diffraction
  • 27.3 Young’s Double Slit Experiment
  • 27.4 Multiple Slit Diffraction
  • 27.5 Single Slit Diffraction
  • 27.6 Limits of Resolution: The Rayleigh Criterion
  • 27.7 Thin Film Interference
  • 27.8 Polarization
  • 27.9 *Extended Topic* Microscopy Enhanced by the Wave Characteristics of Light
  • Introduction to Special Relativity
  • 28.1 Einstein’s Postulates
  • 28.2 Simultaneity And Time Dilation
  • 28.3 Length Contraction
  • 28.4 Relativistic Addition of Velocities
  • 28.5 Relativistic Momentum
  • 28.6 Relativistic Energy
  • Introduction to Quantum Physics
  • 29.1 Quantization of Energy
  • 29.2 The Photoelectric Effect
  • 29.3 Photon Energies and the Electromagnetic Spectrum
  • 29.4 Photon Momentum
  • 29.5 The Particle-Wave Duality
  • 29.6 The Wave Nature of Matter
  • 29.7 Probability: The Heisenberg Uncertainty Principle
  • 29.8 The Particle-Wave Duality Reviewed
  • Introduction to Atomic Physics
  • 30.1 Discovery of the Atom
  • 30.2 Discovery of the Parts of the Atom: Electrons and Nuclei
  • 30.3 Bohr’s Theory of the Hydrogen Atom
  • 30.4 X Rays: Atomic Origins and Applications
  • 30.5 Applications of Atomic Excitations and De-Excitations
  • 30.6 The Wave Nature of Matter Causes Quantization
  • 30.7 Patterns in Spectra Reveal More Quantization
  • 30.8 Quantum Numbers and Rules
  • 30.9 The Pauli Exclusion Principle
  • Introduction to Radioactivity and Nuclear Physics
  • 31.1 Nuclear Radioactivity
  • 31.2 Radiation Detection and Detectors
  • 31.3 Substructure of the Nucleus
  • 31.4 Nuclear Decay and Conservation Laws
  • 31.5 Half-Life and Activity
  • 31.6 Binding Energy
  • 31.7 Tunneling
  • Introduction to Applications of Nuclear Physics
  • 32.1 Diagnostics and Medical Imaging
  • 32.2 Biological Effects of Ionizing Radiation
  • 32.3 Therapeutic Uses of Ionizing Radiation
  • 32.4 Food Irradiation
  • 32.5 Fusion
  • 32.6 Fission
  • 32.7 Nuclear Weapons
  • Introduction to Particle Physics
  • 33.1 The Yukawa Particle and the Heisenberg Uncertainty Principle Revisited
  • 33.2 The Four Basic Forces
  • 33.3 Accelerators Create Matter from Energy
  • 33.4 Particles, Patterns, and Conservation Laws
  • 33.5 Quarks: Is That All There Is?
  • 33.6 GUTs: The Unification of Forces
  • Introduction to Frontiers of Physics
  • 34.1 Cosmology and Particle Physics
  • 34.2 General Relativity and Quantum Gravity
  • 34.3 Superstrings
  • 34.4 Dark Matter and Closure
  • 34.5 Complexity and Chaos
  • 34.6 High-temperature Superconductors
  • 34.7 Some Questions We Know to Ask
  • A | Atomic Masses
  • B | Selected Radioactive Isotopes
  • C | Useful Information
  • D | Glossary of Key Symbols and Notation

Learning Objectives

By the end of this section, you will be able to:

  • Understand and apply a problem-solving procedure to solve problems using Newton's laws of motion.

Success in problem solving is obviously necessary to understand and apply physical principles, not to mention the more immediate need of passing exams. The basics of problem solving, presented earlier in this text, are followed here, but specific strategies useful in applying Newton’s laws of motion are emphasized. These techniques also reinforce concepts that are useful in many other areas of physics. Many problem-solving strategies are stated outright in the worked examples, and so the following techniques should reinforce skills you have already begun to develop.

Problem-Solving Strategy for Newton’s Laws of Motion

Step 1. As usual, it is first necessary to identify the physical principles involved. Once it is determined that Newton’s laws of motion are involved (if the problem involves forces), it is particularly important to draw a careful sketch of the situation . Such a sketch is shown in Figure 4.20 (a). Then, as in Figure 4.20 (b), use arrows to represent all forces, label them carefully, and make their lengths and directions correspond to the forces they represent (whenever sufficient information exists).

Step 2. Identify what needs to be determined and what is known or can be inferred from the problem as stated. That is, make a list of knowns and unknowns. Then carefully determine the system of interest . This decision is a crucial step, since Newton’s second law involves only external forces. Once the system of interest has been identified, it becomes possible to determine which forces are external and which are internal, a necessary step to employ Newton’s second law. (See Figure 4.20 (c).) Newton’s third law may be used to identify whether forces are exerted between components of a system (internal) or between the system and something outside (external). As illustrated earlier in this chapter, the system of interest depends on what question we need to answer. This choice becomes easier with practice, eventually developing into an almost unconscious process. Skill in clearly defining systems will be beneficial in later chapters as well. A diagram showing the system of interest and all of the external forces is called a free-body diagram . Only forces are shown on free-body diagrams, not acceleration or velocity. We have drawn several of these in worked examples. Figure 4.20 (c) shows a free-body diagram for the system of interest. Note that no internal forces are shown in a free-body diagram.

Step 3. Once a free-body diagram is drawn, Newton’s second law can be applied to solve the problem . This is done in Figure 4.20 (d) for a particular situation. In general, once external forces are clearly identified in free-body diagrams, it should be a straightforward task to put them into equation form and solve for the unknown, as done in all previous examples. If the problem is one-dimensional—that is, if all forces are parallel—then they add like scalars. If the problem is two-dimensional, then it must be broken down into a pair of one-dimensional problems. This is done by projecting the force vectors onto a set of axes chosen for convenience. As seen in previous examples, the choice of axes can simplify the problem. For example, when an incline is involved, a set of axes with one axis parallel to the incline and one perpendicular to it is most convenient. It is almost always convenient to make one axis parallel to the direction of motion, if this is known.

Applying Newton’s Second Law

Before you write net force equations, it is critical to determine whether the system is accelerating in a particular direction. If the acceleration is zero in a particular direction, then the net force is zero in that direction. Similarly, if the acceleration is nonzero in a particular direction, then the net force is described by the equation: F net = ma F net = ma .

For example, if the system is accelerating in the horizontal direction, but it is not accelerating in the vertical direction, then you will have the following conclusions:

You will need this information in order to determine unknown forces acting in a system.

Step 4. As always, check the solution to see whether it is reasonable . In some cases, this is obvious. For example, it is reasonable to find that friction causes an object to slide down an incline more slowly than when no friction exists. In practice, intuition develops gradually through problem solving, and with experience it becomes progressively easier to judge whether an answer is reasonable. Another way to check your solution is to check the units. If you are solving for force and end up with units of m/s, then you have made a mistake.

As an Amazon Associate we earn from qualifying purchases.

This book may not be used in the training of large language models or otherwise be ingested into large language models or generative AI offerings without OpenStax's permission.

Want to cite, share, or modify this book? This book uses the Creative Commons Attribution License and you must attribute OpenStax.

Access for free at https://openstax.org/books/college-physics-2e/pages/1-introduction-to-science-and-the-realm-of-physics-physical-quantities-and-units
  • Authors: Paul Peter Urone, Roger Hinrichs
  • Publisher/website: OpenStax
  • Book title: College Physics 2e
  • Publication date: Jul 13, 2022
  • Location: Houston, Texas
  • Book URL: https://openstax.org/books/college-physics-2e/pages/1-introduction-to-science-and-the-realm-of-physics-physical-quantities-and-units
  • Section URL: https://openstax.org/books/college-physics-2e/pages/4-6-problem-solving-strategies

© Jan 19, 2024 OpenStax. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution License . The OpenStax name, OpenStax logo, OpenStax book covers, OpenStax CNX name, and OpenStax CNX logo are not subject to the Creative Commons license and may not be reproduced without the prior and express written consent of Rice University.

Youtube

  • TPC and eLearning
  • Read Watch Interact
  • What's NEW at TPC?
  • Practice Review Test
  • Teacher-Tools
  • Subscription Selection
  • Seat Calculator
  • Ad Free Account
  • Edit Profile Settings
  • Classes (Version 2)
  • Student Progress Edit
  • Task Properties
  • Export Student Progress
  • Task, Activities, and Scores
  • Metric Conversions Questions
  • Metric System Questions
  • Metric Estimation Questions
  • Significant Digits Questions
  • Proportional Reasoning
  • Acceleration
  • Distance-Displacement
  • Dots and Graphs
  • Graph That Motion
  • Match That Graph
  • Name That Motion
  • Motion Diagrams
  • Pos'n Time Graphs Numerical
  • Pos'n Time Graphs Conceptual
  • Up And Down - Questions
  • Balanced vs. Unbalanced Forces
  • Change of State
  • Force and Motion
  • Mass and Weight
  • Match That Free-Body Diagram
  • Net Force (and Acceleration) Ranking Tasks
  • Newton's Second Law
  • Normal Force Card Sort
  • Recognizing Forces
  • Air Resistance and Skydiving
  • Solve It! with Newton's Second Law
  • Which One Doesn't Belong?
  • Component Addition Questions
  • Head-to-Tail Vector Addition
  • Projectile Mathematics
  • Trajectory - Angle Launched Projectiles
  • Trajectory - Horizontally Launched Projectiles
  • Vector Addition
  • Vector Direction
  • Which One Doesn't Belong? Projectile Motion
  • Forces in 2-Dimensions
  • Being Impulsive About Momentum
  • Explosions - Law Breakers
  • Hit and Stick Collisions - Law Breakers
  • Case Studies: Impulse and Force
  • Impulse-Momentum Change Table
  • Keeping Track of Momentum - Hit and Stick
  • Keeping Track of Momentum - Hit and Bounce
  • What's Up (and Down) with KE and PE?
  • Energy Conservation Questions
  • Energy Dissipation Questions
  • Energy Ranking Tasks
  • LOL Charts (a.k.a., Energy Bar Charts)
  • Match That Bar Chart
  • Words and Charts Questions
  • Name That Energy
  • Stepping Up with PE and KE Questions
  • Case Studies - Circular Motion
  • Circular Logic
  • Forces and Free-Body Diagrams in Circular Motion
  • Gravitational Field Strength
  • Universal Gravitation
  • Angular Position and Displacement
  • Linear and Angular Velocity
  • Angular Acceleration
  • Rotational Inertia
  • Balanced vs. Unbalanced Torques
  • Getting a Handle on Torque
  • Torque-ing About Rotation
  • Properties of Matter
  • Fluid Pressure
  • Buoyant Force
  • Sinking, Floating, and Hanging
  • Pascal's Principle
  • Flow Velocity
  • Bernoulli's Principle
  • Balloon Interactions
  • Charge and Charging
  • Charge Interactions
  • Charging by Induction
  • Conductors and Insulators
  • Coulombs Law
  • Electric Field
  • Electric Field Intensity
  • Polarization
  • Case Studies: Electric Power
  • Know Your Potential
  • Light Bulb Anatomy
  • I = ∆V/R Equations as a Guide to Thinking
  • Parallel Circuits - ∆V = I•R Calculations
  • Resistance Ranking Tasks
  • Series Circuits - ∆V = I•R Calculations
  • Series vs. Parallel Circuits
  • Equivalent Resistance
  • Period and Frequency of a Pendulum
  • Pendulum Motion: Velocity and Force
  • Energy of a Pendulum
  • Period and Frequency of a Mass on a Spring
  • Horizontal Springs: Velocity and Force
  • Vertical Springs: Velocity and Force
  • Energy of a Mass on a Spring
  • Decibel Scale
  • Frequency and Period
  • Closed-End Air Columns
  • Name That Harmonic: Strings
  • Rocking the Boat
  • Wave Basics
  • Matching Pairs: Wave Characteristics
  • Wave Interference
  • Waves - Case Studies
  • Color Addition and Subtraction
  • Color Filters
  • If This, Then That: Color Subtraction
  • Light Intensity
  • Color Pigments
  • Converging Lenses
  • Curved Mirror Images
  • Law of Reflection
  • Refraction and Lenses
  • Total Internal Reflection
  • Who Can See Who?
  • Formulas and Atom Counting
  • Atomic Models
  • Bond Polarity
  • Entropy Questions
  • Cell Voltage Questions
  • Heat of Formation Questions
  • Reduction Potential Questions
  • Oxidation States Questions
  • Measuring the Quantity of Heat
  • Hess's Law
  • Oxidation-Reduction Questions
  • Galvanic Cells Questions
  • Thermal Stoichiometry
  • Molecular Polarity
  • Quantum Mechanics
  • Balancing Chemical Equations
  • Bronsted-Lowry Model of Acids and Bases
  • Classification of Matter
  • Collision Model of Reaction Rates
  • Density Ranking Tasks
  • Dissociation Reactions
  • Complete Electron Configurations
  • Enthalpy Change Questions
  • Equilibrium Concept
  • Equilibrium Constant Expression
  • Equilibrium Calculations - Questions
  • Equilibrium ICE Table
  • Ionic Bonding
  • Lewis Electron Dot Structures
  • Line Spectra Questions
  • Measurement and Numbers
  • Metals, Nonmetals, and Metalloids
  • Metric Estimations
  • Metric System
  • Molarity Ranking Tasks
  • Mole Conversions
  • Name That Element
  • Names to Formulas
  • Names to Formulas 2
  • Nuclear Decay
  • Particles, Words, and Formulas
  • Periodic Trends
  • Precipitation Reactions and Net Ionic Equations
  • Pressure Concepts
  • Pressure-Temperature Gas Law
  • Pressure-Volume Gas Law
  • Chemical Reaction Types
  • Significant Digits and Measurement
  • States Of Matter Exercise
  • Stoichiometry - Math Relationships
  • Subatomic Particles
  • Spontaneity and Driving Forces
  • Gibbs Free Energy
  • Volume-Temperature Gas Law
  • Acid-Base Properties
  • Energy and Chemical Reactions
  • Chemical and Physical Properties
  • Valence Shell Electron Pair Repulsion Theory
  • Writing Balanced Chemical Equations
  • Mission CG1
  • Mission CG10
  • Mission CG2
  • Mission CG3
  • Mission CG4
  • Mission CG5
  • Mission CG6
  • Mission CG7
  • Mission CG8
  • Mission CG9
  • Mission EC1
  • Mission EC10
  • Mission EC11
  • Mission EC12
  • Mission EC2
  • Mission EC3
  • Mission EC4
  • Mission EC5
  • Mission EC6
  • Mission EC7
  • Mission EC8
  • Mission EC9
  • Mission RL1
  • Mission RL2
  • Mission RL3
  • Mission RL4
  • Mission RL5
  • Mission RL6
  • Mission KG7
  • Mission RL8
  • Mission KG9
  • Mission RL10
  • Mission RL11
  • Mission RM1
  • Mission RM2
  • Mission RM3
  • Mission RM4
  • Mission RM5
  • Mission RM6
  • Mission RM8
  • Mission RM10
  • Mission LC1
  • Mission RM11
  • Mission LC2
  • Mission LC3
  • Mission LC4
  • Mission LC5
  • Mission LC6
  • Mission LC8
  • Mission SM1
  • Mission SM2
  • Mission SM3
  • Mission SM4
  • Mission SM5
  • Mission SM6
  • Mission SM8
  • Mission SM10
  • Mission KG10
  • Mission SM11
  • Mission KG2
  • Mission KG3
  • Mission KG4
  • Mission KG5
  • Mission KG6
  • Mission KG8
  • Mission KG11
  • Mission F2D1
  • Mission F2D2
  • Mission F2D3
  • Mission F2D4
  • Mission F2D5
  • Mission F2D6
  • Mission KC1
  • Mission KC2
  • Mission KC3
  • Mission KC4
  • Mission KC5
  • Mission KC6
  • Mission KC7
  • Mission KC8
  • Mission AAA
  • Mission SM9
  • Mission LC7
  • Mission LC9
  • Mission NL1
  • Mission NL2
  • Mission NL3
  • Mission NL4
  • Mission NL5
  • Mission NL6
  • Mission NL7
  • Mission NL8
  • Mission NL9
  • Mission NL10
  • Mission NL11
  • Mission NL12
  • Mission MC1
  • Mission MC10
  • Mission MC2
  • Mission MC3
  • Mission MC4
  • Mission MC5
  • Mission MC6
  • Mission MC7
  • Mission MC8
  • Mission MC9
  • Mission RM7
  • Mission RM9
  • Mission RL7
  • Mission RL9
  • Mission SM7
  • Mission SE1
  • Mission SE10
  • Mission SE11
  • Mission SE12
  • Mission SE2
  • Mission SE3
  • Mission SE4
  • Mission SE5
  • Mission SE6
  • Mission SE7
  • Mission SE8
  • Mission SE9
  • Mission VP1
  • Mission VP10
  • Mission VP2
  • Mission VP3
  • Mission VP4
  • Mission VP5
  • Mission VP6
  • Mission VP7
  • Mission VP8
  • Mission VP9
  • Mission WM1
  • Mission WM2
  • Mission WM3
  • Mission WM4
  • Mission WM5
  • Mission WM6
  • Mission WM7
  • Mission WM8
  • Mission WE1
  • Mission WE10
  • Mission WE2
  • Mission WE3
  • Mission WE4
  • Mission WE5
  • Mission WE6
  • Mission WE7
  • Mission WE8
  • Mission WE9
  • Vector Walk Interactive
  • Name That Motion Interactive
  • Kinematic Graphing 1 Concept Checker
  • Kinematic Graphing 2 Concept Checker
  • Graph That Motion Interactive
  • Two Stage Rocket Interactive
  • Rocket Sled Concept Checker
  • Force Concept Checker
  • Free-Body Diagrams Concept Checker
  • Free-Body Diagrams The Sequel Concept Checker
  • Skydiving Concept Checker
  • Elevator Ride Concept Checker
  • Vector Addition Concept Checker
  • Vector Walk in Two Dimensions Interactive
  • Name That Vector Interactive
  • River Boat Simulator Concept Checker
  • Projectile Simulator 2 Concept Checker
  • Projectile Simulator 3 Concept Checker
  • Turd the Target 1 Interactive
  • Turd the Target 2 Interactive
  • Balance It Interactive
  • Go For The Gold Interactive
  • Egg Drop Concept Checker
  • Fish Catch Concept Checker
  • Exploding Carts Concept Checker
  • Collision Carts - Inelastic Collisions Concept Checker
  • Its All Uphill Concept Checker
  • Stopping Distance Concept Checker
  • Chart That Motion Interactive
  • Roller Coaster Model Concept Checker
  • Uniform Circular Motion Concept Checker
  • Horizontal Circle Simulation Concept Checker
  • Vertical Circle Simulation Concept Checker
  • Race Track Concept Checker
  • Gravitational Fields Concept Checker
  • Orbital Motion Concept Checker
  • Balance Beam Concept Checker
  • Torque Balancer Concept Checker
  • Aluminum Can Polarization Concept Checker
  • Charging Concept Checker
  • Name That Charge Simulation
  • Coulomb's Law Concept Checker
  • Electric Field Lines Concept Checker
  • Put the Charge in the Goal Concept Checker
  • Circuit Builder Concept Checker (Series Circuits)
  • Circuit Builder Concept Checker (Parallel Circuits)
  • Circuit Builder Concept Checker (∆V-I-R)
  • Circuit Builder Concept Checker (Voltage Drop)
  • Equivalent Resistance Interactive
  • Pendulum Motion Simulation Concept Checker
  • Mass on a Spring Simulation Concept Checker
  • Particle Wave Simulation Concept Checker
  • Boundary Behavior Simulation Concept Checker
  • Slinky Wave Simulator Concept Checker
  • Simple Wave Simulator Concept Checker
  • Wave Addition Simulation Concept Checker
  • Standing Wave Maker Simulation Concept Checker
  • Color Addition Concept Checker
  • Painting With CMY Concept Checker
  • Stage Lighting Concept Checker
  • Filtering Away Concept Checker
  • InterferencePatterns Concept Checker
  • Young's Experiment Interactive
  • Plane Mirror Images Interactive
  • Who Can See Who Concept Checker
  • Optics Bench (Mirrors) Concept Checker
  • Name That Image (Mirrors) Interactive
  • Refraction Concept Checker
  • Total Internal Reflection Concept Checker
  • Optics Bench (Lenses) Concept Checker
  • Kinematics Preview
  • Velocity Time Graphs Preview
  • Moving Cart on an Inclined Plane Preview
  • Stopping Distance Preview
  • Cart, Bricks, and Bands Preview
  • Fan Cart Study Preview
  • Friction Preview
  • Coffee Filter Lab Preview
  • Friction, Speed, and Stopping Distance Preview
  • Up and Down Preview
  • Projectile Range Preview
  • Ballistics Preview
  • Juggling Preview
  • Marshmallow Launcher Preview
  • Air Bag Safety Preview
  • Colliding Carts Preview
  • Collisions Preview
  • Engineering Safer Helmets Preview
  • Push the Plow Preview
  • Its All Uphill Preview
  • Energy on an Incline Preview
  • Modeling Roller Coasters Preview
  • Hot Wheels Stopping Distance Preview
  • Ball Bat Collision Preview
  • Energy in Fields Preview
  • Weightlessness Training Preview
  • Roller Coaster Loops Preview
  • Universal Gravitation Preview
  • Keplers Laws Preview
  • Kepler's Third Law Preview
  • Charge Interactions Preview
  • Sticky Tape Experiments Preview
  • Wire Gauge Preview
  • Voltage, Current, and Resistance Preview
  • Light Bulb Resistance Preview
  • Series and Parallel Circuits Preview
  • Thermal Equilibrium Preview
  • Linear Expansion Preview
  • Heating Curves Preview
  • Electricity and Magnetism - Part 1 Preview
  • Electricity and Magnetism - Part 2 Preview
  • Vibrating Mass on a Spring Preview
  • Period of a Pendulum Preview
  • Wave Speed Preview
  • Slinky-Experiments Preview
  • Standing Waves in a Rope Preview
  • Sound as a Pressure Wave Preview
  • DeciBel Scale Preview
  • DeciBels, Phons, and Sones Preview
  • Sound of Music Preview
  • Shedding Light on Light Bulbs Preview
  • Models of Light Preview
  • Electromagnetic Radiation Preview
  • Electromagnetic Spectrum Preview
  • EM Wave Communication Preview
  • Digitized Data Preview
  • Light Intensity Preview
  • Concave Mirrors Preview
  • Object Image Relations Preview
  • Snells Law Preview
  • Reflection vs. Transmission Preview
  • Magnification Lab Preview
  • Reactivity Preview
  • Ions and the Periodic Table Preview
  • Periodic Trends Preview
  • Gaining Teacher Access
  • Tasks and Classes
  • Tasks - Classic
  • Subscription
  • Subscription Locator
  • 1-D Kinematics
  • Newton's Laws
  • Vectors - Motion and Forces in Two Dimensions
  • Momentum and Its Conservation
  • Work and Energy
  • Circular Motion and Satellite Motion
  • Thermal Physics
  • Static Electricity
  • Electric Circuits
  • Vibrations and Waves
  • Sound Waves and Music
  • Light and Color
  • Reflection and Mirrors
  • About the Physics Interactives
  • Task Tracker
  • Usage Policy
  • Newtons Laws
  • Vectors and Projectiles
  • Forces in 2D
  • Momentum and Collisions
  • Circular and Satellite Motion
  • Balance and Rotation
  • Electromagnetism
  • Waves and Sound
  • Forces in Two Dimensions
  • Work, Energy, and Power
  • Circular Motion and Gravitation
  • Sound Waves
  • 1-Dimensional Kinematics
  • Circular, Satellite, and Rotational Motion
  • Einstein's Theory of Special Relativity
  • Waves, Sound and Light
  • QuickTime Movies
  • About the Concept Builders
  • Pricing For Schools
  • Directions for Version 2
  • Measurement and Units
  • Relationships and Graphs
  • Rotation and Balance
  • Vibrational Motion
  • Reflection and Refraction
  • Teacher Accounts
  • Task Tracker Directions
  • Kinematic Concepts
  • Kinematic Graphing
  • Wave Motion
  • Sound and Music
  • About CalcPad
  • 1D Kinematics
  • Vectors and Forces in 2D
  • Simple Harmonic Motion
  • Rotational Kinematics
  • Rotation and Torque
  • Rotational Dynamics
  • Electric Fields, Potential, and Capacitance
  • Transient RC Circuits
  • Light Waves
  • Units and Measurement
  • Stoichiometry
  • Molarity and Solutions
  • Thermal Chemistry
  • Acids and Bases
  • Kinetics and Equilibrium
  • Solution Equilibria
  • Oxidation-Reduction
  • Nuclear Chemistry
  • NGSS Alignments
  • 1D-Kinematics
  • Projectiles
  • Circular Motion
  • Magnetism and Electromagnetism
  • Graphing Practice
  • About the ACT
  • ACT Preparation
  • For Teachers
  • Other Resources
  • Newton's Laws of Motion
  • Work and Energy Packet
  • Static Electricity Review
  • Solutions Guide
  • Solutions Guide Digital Download
  • Motion in One Dimension
  • Work, Energy and Power
  • Frequently Asked Questions
  • Purchasing the Download
  • Purchasing the CD
  • Purchasing the Digital Download
  • About the NGSS Corner
  • NGSS Search
  • Force and Motion DCIs - High School
  • Energy DCIs - High School
  • Wave Applications DCIs - High School
  • Force and Motion PEs - High School
  • Energy PEs - High School
  • Wave Applications PEs - High School
  • Crosscutting Concepts
  • The Practices
  • Physics Topics
  • NGSS Corner: Activity List
  • NGSS Corner: Infographics
  • About the Toolkits
  • Position-Velocity-Acceleration
  • Position-Time Graphs
  • Velocity-Time Graphs
  • Newton's First Law
  • Newton's Second Law
  • Newton's Third Law
  • Terminal Velocity
  • Projectile Motion
  • Forces in 2 Dimensions
  • Impulse and Momentum Change
  • Momentum Conservation
  • Work-Energy Fundamentals
  • Work-Energy Relationship
  • Roller Coaster Physics
  • Satellite Motion
  • Electric Fields
  • Circuit Concepts
  • Series Circuits
  • Parallel Circuits
  • Describing-Waves
  • Wave Behavior Toolkit
  • Standing Wave Patterns
  • Resonating Air Columns
  • Wave Model of Light
  • Plane Mirrors
  • Curved Mirrors
  • Teacher Guide
  • Using Lab Notebooks
  • Current Electricity
  • Light Waves and Color
  • Reflection and Ray Model of Light
  • Refraction and Ray Model of Light
  • Classes (Legacy Version)
  • Teacher Resources
  • Subscriptions

first step in solving physics problems

  • Newton's Laws
  • Einstein's Theory of Special Relativity
  • About Concept Checkers
  • School Pricing
  • Newton's Laws of Motion
  • Newton's First Law
  • Newton's Third Law

Mechanics: Newton's Laws of Motion

Calculator pad, version 2, newton's laws of motion: problem set.

An African elephant can reach heights of 13 feet and possess a mass of as much as 6000 kg. Determine the weight of an African elephant in Newtons and in pounds. (Given: 1.00 N = .225 pounds)

  • Audio Guided Solution
  • Show Answer

About twenty percent of the National Football League weighs more than 300 pounds. At this weight, their Body Mass Index (BMI) places them at Grade 2 obesity, which is one step below morbid obesity. Determine the mass of a 300 pound (1330 N) football player.

With fuel prices for combustible engine automobiles increasing, researchers and manufacturers have given more attention to the concept of an ultralight car. Using carbon composites, lighter steels and plastics, a fuel-efficient car can be manufactured at 540 kg. How much less does an ultralight car weigh compared to a 1450-kg Honda Accord (2007)?

According to the National Center for Health Statistics, the average mass of an adult American male is 86 kg. Determine the mass and the weight of an 86-kg man on the moon where the gravitational field is one-sixth that of the Earth.

The rising concern among athletic trainers and health advocates (and parents) regarding concussions and multiple concussions among high school football players has prompted numerous studies of the effectiveness of protective head gear and the forces and accelerations experienced by players. One study suggested that there is a 50% chance of concussions for impacts rated at 75 g's of acceleration (i.e., 75 multiplied by 9.8 m/s/s). (The average head impact results in 22 to 24 g's of acceleration.) If a player's head mass (with helmet) is 6.0 kg and considered to be a free body , then what net force would be required to produce an acceleration of 75 g's?

Captain John Stapp of the U.S. Air Force tested the human limits of acceleration by riding on a rocket sled of his own design, known as the Gee Whiz. What net force would be required to accelerate the 82-kg Stapp at 450 m/s/s (the highest acceleration tested by Stapp)?

Sophia, whose mass is 52 kg, experienced a net force of 1800 N at the bottom of a roller coaster loop during her school's physics field trip to the local amusement park. Determine Sophia's acceleration at this location.

The Top Thrill Dragster stratacoaster at Cedar Point Amusement Park in Ohio uses a hydraulic launching system to accelerate riders from 0 to 54 m/s (120 mi/hr) in 3.8 seconds before climbing a completely vertical 420-foot hill . Determine the net force required to accelerate an 86-kg man.

a. Determine the net force required to accelerate a 540-kg ultralight car from 0 to 27 m/s (60 mph) in 10.0 seconds. b. Determine the net force required to accelerate a 2160-kg Ford Expedition from 0 to 27 m/s (60 mph) in 10.0 seconds.

Problem 10:

Anna Litical and Noah Formula are experimenting with the effect of mass and net force upon the acceleration of a lab cart. They determine that a net force of F causes a cart with a mass of M to accelerate at 48 cm/s/s. What is the acceleration value of a cart with …

a. a mass of M when acted upon by a net force of 2F ? b. a mass of 2M when acted upon by a net force of F ? c. a mass of 2M when acted upon by a net force of 2F ? d. a mass of 4M when acted upon by a net force of 2F ? e. a mass of 2M when acted upon by a net force of 4F ?

Problem 11:

F grav = F norm = 60.5 N F app = 40.2 N F frict = 5.7 N.

Problem 12:

F grav = F norm = 207 N F tens = 182 N F frict = 166 N.

Problem 13:

F tens = 2340 N F grav = 2120 N F norm1 = F norm2 = 276 N.

Problem 14:

It's Friday night and Skyler has been assigned the noble task of baby-sitting Casey, his 2-year old brother. He puts a crash helmet on Casey, places him in the red wagon and takes him on a stroll through the neighborhood. As Skyler starts across the street, he exerts a 52 N forward force on the wagon. There is a 24 N resistance force and the wagon and Casey have a combined weight of 304 N. Construct a free body diagram depicting the types of forces acting upon the wagon. Then determine the net force, mass and acceleration of the wagon.

Problem 15:

After a lead-off single in the 8 th inning, Earl makes an effort to steal second base. As he hits the dirt on his head first dive, his 73.2 kg body encounters 249 N of friction force. Construct a free body diagram depicting the types of forces acting upon Earl. Then determine the net force and acceleration.

Problem 16:

Mira and Tariq are lab partners for the Pulley and Bricks Lab. They have determined that the 2.15-kg brick is experiencing a forward tension force of 9.54 N and a friction force of 8.69 N as it is accelerated across the table top. Construct a free body diagram depicting the types of forces acting upon the brick. Then determine the net force and acceleration of the brick.

Problem 17:

Moments after making the dreaded decision to jump out the door of the airplane, Darin's 82.5-kg body experiences 118 N of air resistance. Determine Darin's acceleration at this instant in time. HINT: begin by drawing a free body diagram and determine the net force.

Problem 18:

Kelli and Jarvis are members of the stage crew for the Variety Show. Between acts, they must quickly move a Baby Grand Piano onto stage. After the curtain closes, they exert a sudden forward force of 524 N to budge the piano from rest and get it up to speed. The 158-kg piano experiences 418 N of friction.

a. What is the piano's acceleration during this phase of its motion? b. If Kelli and Jarvis maintain this forward force for 1.44 seconds, then what speed will the piano have?

Problem 19:

Skydiving tunnels have become popular attractions, appealing in part to those who would like a taste of the skydiving experience but are too overwhelmed by the fear of jumping out of a plane at several thousand feet. Skydiving tunnels are vertical wind tunnels through which air is blown at high speeds, allowing visitors to experience bodyflight . On Natalya's first adventure inside the tunnel, she changes her orientation and for an instant, her 46.8-kg body momentarily experiences an upward force of air resistance of 521 N. Determine Natalya's acceleration during this moment in time.

Problem 20:

A rope is used to pull a 2.89-kg bucket of water out of a deep well.

a. What is the acceleration of the bucket when the tension in the rope is 30.2 N? b. If starting from rest, what speed will the bucket have after experiencing this force for 2.16 seconds?

Problem 21:

A 0.104-kg model rocket accelerates at 45.9 m/s/s on takeoff. Determine the upward thrust experienced by the rocket.

Problem 22:

Brandon is the catcher for the Varsity baseball team. He exerts a forward force on the 0.145-kg baseball to bring it to rest from a speed of 38.2 m/s. During the process, his hand recoils a distance of 0.135 m. Determine the acceleration of the ball and the force which is applied to it by Brandon.

Problem 23:

Alejandra is attempting to drag her 32.6-kg Golden Retriever across the wooden floor by applying a horizontal force. What force must she apply to move the dog with a constant speed of 0.95 m/s? The coefficient of friction between the dog and the floor is 0.72.

Problem 24:

The coefficient of friction between the wheels of Dawson's 1985 Ford Coupe and the dry pavement is 0.85. Determine the acceleration which the 1300-kg Coupe experiences while skidding to a stop.

Problem 25:

Nicholas, Brianna, Dylan and Chloe are practicing their hockey on frozen Bluebird Lake. As Dylan and Chloe chase after the 0.162 kg puck, it decelerates from 10.5 m/s to 8.8 m/s in 14 seconds.

a. Determine the acceleration of the puck. b. Determine the force of friction experienced by the puck. c. Determine the coefficient of friction between the ice and the puck.

Problem 26:

Unbeknownst to most students, every time the school floors are waxed, the physics teachers get together to have a barrel of phun doing friction experiments in their socks (uhm - they do have clothes on; its just that they don't have any shoes on their feet). On one occasion, Mr. London applies a horizontal force to accelerate Mr. Schneider (mass of 84 kg) rightward at a rate of 1.2 m/s/s. If the coefficient of friction between Mr. Schneider 's socks and the freshly waxed floors is 0.35, then with what force (in Newtons) must Mr. London be pulling?

Problem 27:

Dexter Eius is running through the cafeteria when he slips on some mashed potatoes and falls to the floor. (Let that be a lesson for Dexter.) Dexter lands in a puddle of milk and skids to a stop with an acceleration of -4.8 m/s/s. Dexter weighs 780 Newtons. Determine the coefficient of friction between Dexter and the milky floor.

Problem 28:

The Harrier Jump Jet is a fixed wing military jet designed for vertical takeoff and landing (VTOL). It is capable of rotating its jets from a horizontal to a vertical orientation in order to takeoff, land and conduct horizontal maneuvers. Determine the vertical thrust required to accelerate an 8600-kg Harrier upward at 0.40 m/s/s.

Problem 29:

While skydiving, Dee Selerate opens her parachute and her 53.4-kg body immediately accelerates upward for an instant at 8.66 m/s/s. Determine the upward force experienced by Dee during this instant.

Problem 30:

A 1370-kg car is skidding to a stop along a horizontal surface. The car decelerates from 27.6 m/s to a rest position in 3.15 seconds. Assuming negligible air resistance, determine the coefficient of friction between the car tires and the road surface.

Return to Overview

View Audio Guided Solution for Problem:

EN - English

DE - Deutsch

ES - Español

IT - Italiano

FR - Français

PT - Português

Table of content

Full table of contents

Problem-solving is the ability to apply general physical principles to specific situations, usually expressed by equations. It is an essential skill in physics, and can also be useful for applying physics in everyday life as well. Analytical skills and problem-solving abilities can be applied to new situations, compared to a list of facts, which can never be extensive enough to include every possible circumstance. To solve physics problems, a certain amount of creativity and insight is required; this can be developed through experience and practice.

Although there is no simple step-by-step method that works for every problem, a three-stage process can be followed: Strategy, Solution, and Evaluation.

  • Strategy is the first stage of solving a problem. The goal is to determine the nature of the problem and then devise a strategy for resolving it.
  • The solution stage is when the math is done. Substitute the knowns along with their units into the relevant equation and obtain numerical solutions complete with units.
  • After obtaining a numerical answer, the last step is to evaluate its significance. This is done by checking units, determining if the answer is reasonable or not, and then determining what interesting information the result provides.

Ultimately, physics is about comprehending nature, and we solve physics problems to gain a better grasp of how nature works.

The text is adapted from Openstax, University Physics Volume 1, Section 1.7: Solving Problems in Physics.

Terms of Use

Recommend to library

JoVE NEWSLETTERS

JoVE Journal

Methods Collections

JoVE Encyclopedia of Experiments

JoVE Science Education

JoVE Lab Manual

Faculty Resource Center

Publishing Process

Editorial Board

Scope and Policies

Peer Review

Testimonials

Subscriptions

Library Advisory Board

Copyright © 2024 MyJoVE Corporation. All rights reserved

Physics Network

What is the first step to solving a physics problem?

The first thing that you will need to do is to identify what object(s) will be the focus of the diagram—in other words, what system do you need to consider in order to answer the question. In some cases, you will need to consider several objects as separate systems.

What are the 4 steps to solving any physics problem?

  • Read the problem.
  • Draw a diagram.
  • State the known and unknown variables.
  • State the equations (formulae).
  • Solve the equation(s).
  • Substitute known values into the solved equation.
  • Calculate unknown from known values.
  • Check final answer for reasonability.

How do you solve a physics problem?

Is physics all about problem solving?

Problem-solving skills are clearly essential to success in a quantitative course in physics. More important, the ability to apply broad physical principles—usually represented by equations—to specific situations is a very powerful form of knowledge. It is much more powerful than memorizing a list of facts.

Is physics easy or hard?

Students and researchers alike have long understood that physics is challenging. But only now have scientists managed to prove it. It turns out that one of the most common goals in physics—finding an equation that describes how a system changes over time—is defined as “hard” by computer theory.

How do I become good at physics?

  • Master the Basics.
  • Learn How to Basic Equations Came About.
  • Always Account For Small Details.
  • Work on Improving Your Math Skills.
  • Simplify the Situations.
  • Use Drawings.
  • Always Double-Check Your Answers.
  • Use Every Source of Physics Help Available.

Why is physics so hard?

Why is Physics harder than Math? Answer: Physics demands problem-solving skills that can be developed only with practice. It also involves theoretical concepts, mathematical calculations and laboratory experiments that adds to the challenging concepts.

What is the most difficult physics?

Quantum mechanics is deemed the hardest part of physics. Systems with quantum behavior don’t follow the rules that we are used to, they are hard to see and hard to “feel”, can have controversial features, exist in several different states at the same time – and even change depending on whether they are observed or not.

How do you think logically in physics?

The best way to deal with this is to “start with the basics” of any subject you are studying. In physics, go back to main principles. Acceleration is velocity/time because acceleration is the rate at which velocity changes. Just like that, take a basic principle that you do understand and move forward from there.

What are the five steps to solving a physics problem?

The strategy we would like you to learn has five major steps: Focus the Problem, Physics Description, Plan a Solution, Execute the Plan, and Evaluate the Solution. Let’s take a detailed look at each of these steps and then do an sample problem following the strategy.

Who is the father of problem solving method?

George Polya, known as the father of modern problem solving, did extensive studies and wrote numerous mathematical papers and three books about problem solving.

What are the first two steps in the 4’s method of problem solving?

The first S is to State the problem properly, identifying the core question at hand as well as its context, owner, and stakeholders. The second S is to Structure the problem, either around candidate solution(s) you will test or by splitting the core question into sub-issues that you will investigate systematically.

Is there an app that solves physics?

PhyWiz solves your physics homework for you. Get step by step solutions for questions in over 30 physics topics like Kinematics, Forces, Gravity, Quantum Physics and many more. Ask PhyWiz a question like “if mass is 6 and velocity is 7, what is momentum?” and get your answer immediately.

How do you solve physics numerical class 10?

How do you solve NEET physics Numericals?

  • Study and practice Physics every day.
  • Don’t miss your classes and make class notes.
  • Read/ Preview the topic before the class.
  • Revise everything after the class.
  • Follow NEET study material to understand concepts well.
  • Solve problems from NCERT and coaching modules.

Is physics harder than math?

Physics might be more challenging because of the theoretical concepts, the mathematical calculations, laboratory experiments and even the need to write lab reports.

Is physics harder than biology?

Beginning university students in the sciences usually consider biology to be much easier than physics or chemistry. From their experience in high school, physics has math and formulae that must be understood to be applied correctly, but the study of biology relies mainly on memorization.

Is physics harder than chemistry?

Physics is considered comparatively harder than chemistry and various other disciplines such as psychology, geology, biology, astronomy, computer science, and biochemistry. It is deemed difficult compared to other fields because the variety of abstract concepts and the level of maths in physics is incomparable.

How can I study physics in one hour?

Which is the best time to study physics?

That said, science has indicated that learning is most effective between 10 am to 2 pm and from 4 pm to 10 pm, when the brain is in an acquisition mode.

How can I study physics in one day?

Is physics harder than calculus?

Physics is absolutely harder than calculus. Calculus is an intermediate level of mathematics that is usually taught during the first two years of most STEM majors. Physics on the other hand is a very advanced and difficult and highly researched field.

What is the hardest subject?

The hardest degree subjects are Chemistry, Medicine, Architecture, Physics, Biomedical Science, Law, Neuroscience, Fine Arts, Electrical Engineering, Chemical Engineering, Economics, Education, Computer Science and Philosophy.

Is physics in grade 11 hard?

So in short 11 physics is not tough. But you may feel that learning derivations for school exams is boring . Don’t get afraid from numericals . Give proper time to kinematics, rotation and shm.

What’s the hardest thing in math?

  • The Collatz Conjecture. Dave Linkletter.
  • Goldbach’s Conjecture Creative Commons.
  • The Twin Prime Conjecture. Wolfram Alpha.
  • The Riemann Hypothesis.
  • The Birch and Swinnerton-Dyer Conjecture.
  • The Kissing Number Problem.
  • The Unknotting Problem.
  • The Large Cardinal Project.

Privacy Overview

Library homepage

  • school Campus Bookshelves
  • menu_book Bookshelves
  • perm_media Learning Objects
  • login Login
  • how_to_reg Request Instructor Account
  • hub Instructor Commons
  • Download Page (PDF)
  • Download Full Book (PDF)
  • Periodic Table
  • Physics Constants
  • Scientific Calculator
  • Reference & Cite
  • Tools expand_more
  • Readability

selected template will load here

This action is not available.

Physics LibreTexts

8.4: Solving Statics Problems

  • Last updated
  • Save as PDF
  • Page ID 14483

learning objectives

  • Formulate and apply six steps to solve static problems

Statics is the study of forces in equilibrium. Recall that Newton’s second law states:

\[\mathrm{∑F=ma}\]

Therefore, for all objects moving at constant velocity (including a velocity of 0 — stationary objects), the net external force is zero. There are forces acting, but they are balanced — that is to say, they are “in equilibrium. ”

When solving equilibrium problems, it might help to use the following steps:

  • First, ensure that the problem you’re solving is in fact a static problem—i.e., that no acceleration (including angular acceleration) is involved Remember:\(\mathrm{∑F=ma=0}\) for these situations. If rotational motion is involved, the condition \(\mathrm{∑τ=Iα=0}\) must also be satisfied, where is torque, is the moment of inertia, and is the angular acceleration.
  • Choose a pivot point. Often this is obvious because the problem involves a hinge or a fixed point. If the choice is not obvious, pick the pivot point as the location at which you have the most unknowns. This simplifies things because forces at the pivot point create no torque because of the cross product:\(\mathrm{τ=rF}\)
  • Write an equation for the sum of torques, and then write equations for the sums of forces in the x and y directions. Set these sums equal to 0. Be careful with your signs.
  • Solve for your unknowns.
  • Insert numbers to find the final answer.
  • Check if the solution is reasonable by examining the magnitude, direction, and units of the answer. The importance of this last step cannot be overstated, although in unfamiliar applications, it can be more difficult to judge reasonableness. However, these judgments become progressively easier with experience.
  • First, ensure that the problem you’re solving is in fact a static problem—i.e., that no acceleration (including angular acceleration ) is involved.
  • Choose a pivot point — use the location at which you have the most unknowns.
  • Write equations for the sums of torques and forces in the x and y directions.
  • Solve the equations for your unknowns algebraically, and insert numbers to find final answers.
  • torque : A rotational or twisting effect of a force; (SI unit newton-meter or Nm; imperial unit foot-pound or ft-lb)
  • moment of inertia : A measure of a body’s resistance to a change in its angular rotation velocity

LICENSES AND ATTRIBUTIONS

CC LICENSED CONTENT, SHARED PREVIOUSLY

  • Curation and Revision. Provided by : Boundless.com. License : CC BY-SA: Attribution-ShareAlike

CC LICENSED CONTENT, SPECIFIC ATTRIBUTION

  • OpenStax College, College Physics. September 17, 2013. Provided by : OpenStax CNX. Located at : http://cnx.org/content/m42173/latest/?collection=col11406/1.7 . License : CC BY: Attribution
  • OpenStax College, College Physics. September 17, 2013. Provided by : OpenStax CNX. Located at : http://cnx.org/content/m42167/latest/?collection=col11406/1.7 . License : CC BY: Attribution
  • torque. Provided by : Wiktionary. Located at : en.wiktionary.org/wiki/torque . License : CC BY-SA: Attribution-ShareAlike
  • moment of inertia. Provided by : Wiktionary. Located at : en.wiktionary.org/wiki/moment_of_inertia . License : CC BY-SA: Attribution-ShareAlike

IMAGES

  1. How To Solve Physics Problems Easily?

    first step in solving physics problems

  2. How to Be a Better Physics Problem Solver: Tips for High School and

    first step in solving physics problems

  3. How to Solve Work Problems for Physics & AP Physics Classes

    first step in solving physics problems

  4. Physics Problem Solving Steps Printable [FREEBIE] by Suntree Science

    first step in solving physics problems

  5. Physics. Problem solving. 01_13

    first step in solving physics problems

  6. 8 Steps To Solving Physics Problems

    first step in solving physics problems

VIDEO

  1. 11 Physics

  2. Solve* Any PHYSICS Numerical In 3 Easy STEPS😎| NEET 2024

  3. Physics Answer: Which string will break first?

  4. Physics Example 4.7

  5. Physics String Problems Part 1

  6. LEC 1B Solving Physics Problems

COMMENTS

  1. 1.8: Solving Problems in Physics

    Such analytical skills are useful both for solving problems in this text and for applying physics in everyday life. . Figure 1.8.1 1.8. 1: Problem-solving skills are essential to your success in physics. (credit: "scui3asteveo"/Flickr) As you are probably well aware, a certain amount of creativity and insight is required to solve problems.

  2. How to Solve Any Physics Problem: 10 Steps (with Pictures)

    1 Calm down. It is just a problem, not the end of the world! 2 Read through the problem once. If it is a long problem, read and understand it in parts till you get even a slight understanding of what is going on. 3 Draw a diagram. It cannot be emphasized enough how much easier a problem will be once it is drawn out.

  3. 1.7 Solving Problems in Physics

    Strategy is the beginning stage of solving a problem. The idea is to figure out exactly what the problem is and then develop a strategy for solving it. Some general advice for this stage is as follows: Examine the situation to determine which physical principles are involved. It often helps to draw a simple sketch at the outset.

  4. 6.1 Solving Problems with Newton's Laws

    Problem-Solving Strategy Applying Newton's Laws of Motion Identify the physical principles involved by listing the givens and the quantities to be calculated. Sketch the situation, using arrows to represent all forces. Determine the system of interest. The result is a free-body diagram that is essential to solving the problem.

  5. 1.4: Solving Physics Problems

    Trigonometry and Solving Physics Problems. In physics, most problems are solved much more easily when a free body diagram is used. Free body diagrams use geometry and vectors to visually represent the problem. Trigonometry is also used in determining the horizontal and vertical components of forces and objects.

  6. PDF An Expert's Approach to Solving Physics Problems

    Focus on the Problem. Establish a clear mental image of the problem. Visualize the situation and events by sketching a useful picture. Identify physics concepts and approaches that might be useful to reach a solution. In your own words, precisely state the question to be answered in terms you can calculate. Describe the Physics.

  7. 1.7 Solving Problems in Physics

    Strategy Strategy is the beginning stage of solving a problem. The idea is to figure out exactly what the problem is and then develop a strategy for solving it. Some general advice for this stage is as follows: Examine the situation to determine which physical principles are involved. It often helps to draw a simple sketch at the outset.

  8. 4.6 Problem-Solving Strategies

    Step 1. As usual, it is first necessary to identify the physical principles involved. Once it is determined that Newton's laws of motion are involved (if the problem involves forces), it is particularly important to draw a careful sketch of the situation. Such a sketch is shown in Figure 4.20 (a).

  9. Kinematic Equations: Sample Problems and Solutions

    Determine the acceleration of the car. See Answer See solution below. Upton Chuck is riding the Giant Drop at Great America. If Upton free falls for 2.60 seconds, what will be his final velocity and how far will he fall? See Answer See solution below. A race car accelerates uniformly from 18.5 m/s to 46.1 m/s in 2.47 seconds.

  10. Kinematic Equations and Problem-Solving

    Construct an informative diagram of the physical situation. Identify and list the given information in variable form. Identify and list the unknown information in variable form. Identify and list the equation that will be used to determine unknown information from known information.

  11. PDF Introductory Physics: Problems solving

    This collection of physics problems solutions does not intend to cover the whole Introductory Physics course. Its purpose is to show the right way to solve physics problems. Here some useful tips. 1. Always try to find out what a problem is about, which part of the physics course is in question 2. Drawings are very helpful in most cases.

  12. Solving Physics Problems

    Activities How do you utilize the GUESS method in physics? To use the GUESS method in physics, first identify the givens, or knowns, in the problem. Second, identify the unknowns and which...

  13. Solving Problems in Physics

    Solving a physics problem usually breaks down into three stages: Design a strategy. Execute that strategy. Check the resulting answer. This document treats each of these three elements in turn, and concludes with a summary. Strategy Design Look before you leap.

  14. 4.6: Problem-Solving Strategies

    Problem-Solving Strategy for Newton's Laws of Motion. Step 1. As usual, it is first necessary to identify the physical principles involved. Once it is determined that Newton's laws of motion are involved (if the problem involves forces), it is particularly important to draw a careful sketch of the situation. Such a sketch is shown in Figure(a).

  15. Approaches to Solving Problems in Physics

    The first equation comes from the fact that cos(θ) has a zero at 1/2 π (90 degrees) and repeats every integer multiple of π (180 degrees), which is what the right-hand side of the first equation means (1/2 π plus some integer multiple of π).From there, I divide both sides by 2 and end up with the possible values of θ.Since θ has to be in the range 0 (firing straight forward) to 1/2 π ...

  16. Newton's Law Problem Sets

    Problem 22: Brandon is the catcher for the Varsity baseball team. He exerts a forward force on the .145-kg baseball to bring it to rest from a speed of 38.2 m/s. During the process, his hand recoils a distance of 0.135 m. Determine the acceleration of the ball and the force which is applied to it by Brandon.

  17. Solving Problems in Physics

    To solve physics problems, a certain amount of creativity and insight is required; this can be developed through experience and practice. Although there is no simple step-by-step method that works for every problem, a three-stage process can be followed: Strategy, Solution, and Evaluation. Strategy is the first stage of solving a problem.

  18. What are the 6 steps of problem solving?

    Step 1: Identify the Problem. As obvious as it may sound, the first step in the problem-solving process is to identify the root of the issue. Step 2: Generate potential solutions. Step 3: Choose one solution. Step 4: Implement the solution you've chosen.

  19. 2.6: Problem-Solving Basics for One-Dimensional Kinematics

    The six basic problem solving steps for physics are: Step 1. Examine the situation to determine which physical principles are involved. Step 2. Make a list of what is given or can be inferred from the problem as stated (identify the knowns). Step 3. Identify exactly what needs to be determined in the problem (identify the unknowns). Step 4.

  20. 1.8: Solving Problems in Physics

    Such analytical skills are useful both for solving problems in this text and for applying physics in everyday life. . Figure 1.8.1 1.8. 1: Problem-solving skills are essential to your success in physics. (credit: "scui3asteveo"/Flickr) As you are probably well aware, a certain amount of creativity and insight is required to solve problems.

  21. What are the 5 steps in problems solving?

    Spread the love. Step 1: Identify the Problem. As obvious as it may sound, the first step in the problem-solving process is to identify the root of the issue. Step 2: Generate potential solutions. Step 3: Choose one solution. Step 4: Implement the solution you've chosen. Step 5: Evaluate results.

  22. What is the first step to solving a physics problem?

    What is the first step to solving a physics problem? May 1, 2023 September 29, 2022 by George Jackson. Spread the love. The first thing that you will need to do is to identify what object(s) will be the focus of the diagram—in other words, what system do you need to consider in order to answer the question. In some cases, you will need to ...

  23. 8.4: Solving Statics Problems

    Formulate and apply six steps to solve static problems. Statics is the study of forces in equilibrium. Recall that Newton's second law states: ∑ F = ma (8.4.1) (8.4.1) ∑ F = m a. Therefore, for all objects moving at constant velocity (including a velocity of 0 — stationary objects), the net external force is zero.