open search

  • Current Students
  • Faculty / Staff
  • Paying for College
  • Alumni Services
  • Partnerships
  • Program Finder
  • Affordable, Flexible, Accessible
  • Distance Education
  • All Online Courses & Degrees
  • Baccalaureate Online
  • Graduate Online
  • Start Dates
  • Admissions, Costs & Aid
  • Faculty and Contacts
  • Academic and Career Support
  • Student Testimonials
  • Distance Education Advantage
  • About Hybrid Learning
  • Hybrid Learning Degrees
  • Admissions Requirements
  • Top Destination Courses
  • Student Life
  • Academic Support
  • Academic Calendar
  • Open House Events
  • Faculty & Contacts
  • Technical Institute for Environmental Professions
  • Term Calendar
  • Sustainable Ventures
  • Careers & Outcomes
  • About Unity
  • Office of the President
  • Announcing Our Evolution
  • Sustainable Achievements & Initiatives
  • Reinventing College
  • Extended Reality (XR)
  • Commencement
  • Give to Unity Environmental University
  • Institutional Communications
  • Unity Environmental University News

Unity Environmental University

Brainstorming Ways to Solve Environmental Problems? 5 Simple Ways You Can Help

June 1, 2019

Home  /  News  /  Brainstorming Ways to Solve Environmental Problems? 5 Simple Ways You Can Help

We are currently facing the most critical environmental issues in human history. Our climate, planet, lives, and future as a civilization are all at risk. While the magnitude of that thought can be extremely overwhelming, don’t allow yourself to feel helpless, not knowing where to begin. Making small steps and adjustments in your daily routine will give you a sense of success and a yearning to attempt more.

Here are 5 simple ways you can help the environment and spark others to become more environmentally aware.

1. Replace disposable items with reusable

Anything you use and throw away can potentially spend centuries in a landfill. See below for simple adjustments you can make to decrease the amount of disposable items in your daily life.

  • Carry your own reusable cup or water bottle
  • Use airtight, reusable food containers instead of sandwich bags and plastic wrap
  • Pack a waste-free lunch: carry your utensils, cloth napkin, and containers in a reusable lunch bag
  • Bring your own bags to the grocery store
  • Consider buying bulk containers of your preferred beverages and refilling a reusable bottle, instead of buying individually packaged drinks
  • Use rechargeable batteries

2. Pass on paper

We are living in the Digital Era, but think about all the paper products you use in your daily life. These actions still align with reusing and repurposing, though may take a little more time for transition.

  • Join a library instead of buying books or buy a Kindle
  • Print as little as possible; and if you must, print on both sides
  • Wrap gifts in fabric and tie with ribbon; both are reusable and prettier than paper and sticky-tape
  • Stop using paper towels and incorporate washable cloths
  • Look at labels to make sure you only use FSC-certified wood and paper products
  • Cut out products made by palm oil companies that contribute to deforestation in Indonesia and Malaysia

3. Conserve water & electricity

The tips you see below will seem like no-brainers; however, it may take to become more aware of your unconscious habits.

  • Turn the sink water off when brushing your teeth
  • Water the lawn in the morning or evening; cooler air causes less evaporation
  • Switch off anything that uses electricity when not in use (lights, televisions, computers, printers, etc.)
  • Unplug devices when possible; even when an appliance is turned off, it may still use power
  • Remove chemicals inside of the house; research companies that use plant-derived ingredients for their household cleaning products
  • Remove chemicals outside of the house; use eco-friendly pesticides and herbicides that won’t contaminate groundwater
  • Consider signing up for a renewable energy producer that uses 100% renewable energy to power homes

4. Support local & environmentally friendly

Here are a few reasons to start buying local:

  • Reduces plastic and paper waste
  • Boosts cost-efficiency
  • Enables bulk purchasing
  • Helps support your neighbors
  • Retains farmland within the community
  • Builds up the local economy
  • Uses fewer chemicals for both for growing and transporting

5. Recycle (& then recycle properly)

Implementing recycling habits into your daily life is one of the most effective ways to help lessen landfill waste, conserve natural resources, save habitats, reduce pollution, cut down on energy consumption, and slow down global warming.

  • Confirm you are using the proper separation containers for your household per the local recycling services
  • Remember to make sure your trash bags are recycled or biodegradable, and always cut up the plastic rings from packs of beer or soda to prevent wildlife from getting caught
  • Educate yourself about what can and cannot be recycled, as not all plastic and cardboard is acceptable (like pizza boxes for example, due to the grease) ( click here for a simple 101 )
  • Learn how to identify and dispose of hazardous waste properly ( click here to learn more )

Taking the time to simply read this article for ways to solve environmental problems is a step forward to becoming more aware of the needs of your environment. You are now taking action, and every change–big or small–will create an impact.

If you’re already taking action on the suggestions above, see below for additional tips and ideas:

  • Add these simple lists to your digital checklist and pick one at a time to tackle. After a week or so, check it off the list and move on to the next. Remember to pat yourself on the back! You just created a change in your lifestyle!
  • Find a comfortable compromise for your life. Purchase a pack of affordable, reusable rags and give them a specific purpose. For example, perhaps you always clean your countertops with paper towels; try wiping them down with cloth towels instead.
  • Remember to highlight your successes and share them with others! #savetheplanet
  • Calculate your environmental footprint to see how much impact just one person has on the world’s resources and adjust accordingly.
  • Consider an environmentally-focused career like one of the top four environmental jobs of the future.

Interested in learning more about Unity College’s programs? Get in touch with us by completing this form .

Careers and Outcomes

Follow your curiosity.

Realize your potential..

apply here

Start Your Journey

get more info

Looking for Answers

Get More Info

© Unity Environmental University 2024. “America’s Environmental University.™”

Privacy Overview

  • Environment

Are there real ways to fight climate change? Yes.

Humans have the solutions to fight a global environmental crisis. Do we have the will?

The evidence that humans are causing climate change, with drastic consequences for life on the planet, is overwhelming .

Experts began raising the alarm about global warming in 1979 , a change now referred to under the broader term climate change , preferred by scientists to describe the complex shifts now affecting our planet’s weather and climate systems. Climate change encompasses not only rising average temperatures but also extreme weather events, shifting wildlife populations and habitats, rising seas , and a range of other impacts. 

Over 200 countries—193 countries plus the 27 members of the European Union—have signed the Paris Climate Agreement , a treaty created in 2015 to fight climate change on a global scale. The Intergovernmental Panel on Climate Change (IPCC), which synthesizes the scientific consensus on the issue, has set a goal of keeping warming under 2°C (3.6°F) and pursuing an even lower warming cap of 1.5 °C (2.7° F).

But no country has created policies that will keep the world below 1.5 °C, according to the Climate Action Tracker . Current emissions have the world on track to warm 2.8°C by the end of this century. 

Addressing climate change will require many solutions —there's no magic bullet. Yet nearly all of these solutions exist today. They range from worldwide changes to where we source our electricity to protecting forests from deforestation. 

The promise of new technology

Better technology will help reduce emissions from activities like manufacturing and driving. 

Scientists are working on ways to sustainably produce hydrogen, most of which is currently derived from natural gas, to feed zero-emission fuel cells for transportation and electricity. 

Renewable energy is growing, and in the U.S., a combination of wind, solar, geothermal, and other renewable sources provide 20 percen t of the nation’s electricity. 

New technological developments promise to build better batteries to store that renewable energy, engineer a smarter electric grid, and capture carbon dioxide from power plants and store it underground or turn it into valuable products such as gasoline . Some argue that nuclear power—despite concerns over safety, water use, and toxic waste—should also be part of the solution, because nuclear plants don't contribute any direct air pollution while operating.

Should we turn to geoengineering?

While halting new greenhouse gas emissions is critical, scientists say we need to extract existing carbon dioxide from the atmosphere, effectively sucking it out of the sky. 

Pulling carbon out of the atmosphere is a type of geoengineering , a science that interferes with the Earth’s natural systems, and it’s a controversial approach to fighting climate change.

Other types of geoengineering involve spraying sunlight-reflecting aerosols into the air or blocking the sun with a giant space mirror. Studies suggest we don’t know enough about the potential dangers of geoengineering to deploy it.

An iceberg melts in the waters off Antarctica. Climate change has accelerated the rate of ice loss across the continent.

Restoring nature to protect the planet 

Planting trees, restoring seagrasses, and boosting the use of agricultural cover crops could help clean up significant amounts of carbon dioxide . 

The Amazon rainforest is an important reservoir of the Earth’s carbon, but a study published in 2021, showed deforestation was transforming this reservoir into a source of pollution. 

Restoring and protecting nature may provide as much as  37 percent of the climate mitigation needed to reach the Paris Agreement’s 203o targets. Protecting these ecosystems can also benefit biodiversity, providing a win-win for nature .

Adapt—or else

Communities around the world are already recognizing that adaptation must also be part of the response to climate change . From flood-prone coastal towns to regions facing increased droughts and fires, a new wave of initiatives focuses on boosting resilience . Those include managing or preventing land erosion, building microgrids and other energy systems built to withstand disruptions, and designing buildings with rising sea levels in mind.

Last year, the Inflation Reduction Act was signed into law and was a historic investment in fighting and adapting to climate change.

( Read more about how the bill will dramatically reduce emissions. )

Recent books such as Drawdown and Designing Climate Solutions have proposed bold yet simple plans for reversing our current course. The ideas vary, but the message is consistent: We already have many of the tools needed to address climate change. Some of the concepts are broad ones that governments and businesses must implement, but many other ideas involve changes that anyone can make— eating less  meat , for example, or rethinking your modes of transport .

"We have the technology today to rapidly move to a clean energy system," write the authors of Designing Climate Solutions . "And the price of that future, without counting environmental benefits, is about the same as that of a carbon-intensive future."

Sarah Gibbens contributed reporting to this article.

Read This Next

Can we put carbon back where we found it it just might work., which cities will still be livable in a world altered by climate change, seaweed may play a big role in the fight against climate change.

  • Planet Possible

How the climate bill will dramatically cut U.S. emissions

History & culture.

  • History Magazine
  • History & Culture
  • Paid Content
  • Coronavirus Coverage
  • Mind, Body, Wonder
  • Terms of Use
  • Privacy Policy
  • Your US State Privacy Rights
  • Children's Online Privacy Policy
  • Interest-Based Ads
  • About Nielsen Measurement
  • Do Not Sell or Share My Personal Information
  • Nat Geo Home
  • Attend a Live Event
  • Book a Trip
  • Inspire Your Kids
  • Shop Nat Geo
  • Visit the D.C. Museum
  • Learn About Our Impact
  • Support Our Mission
  • Advertise With Us
  • Customer Service
  • Renew Subscription
  • Manage Your Subscription
  • Work at Nat Geo
  • Sign Up for Our Newsletters
  • Contribute to Protect the Planet

Copyright © 1996-2015 National Geographic Society Copyright © 2015-2024 National Geographic Partners, LLC. All rights reserved

6 global environmental issues and ways you can help

1. loss of biodiversity .

In 2019, the United Nations published a groundbreaking report stating that more than one million animal and plant species are at risk of becoming extinct in the upcoming decades. Conservationists have been urging us to protect wildlife for years, and now it’s a race against the clock. The world needs biodiversity. Birds transport seeds across rainforests, sharks balance ocean food webs, mangroves hold important nutrients in wetlands… without diverse species and their unique ecological roles, our planet would suffer greatly. 

What you can do: 

Habitat loss and fragmentation is one of the fastest growing threats against species’ survival. From shrinking elephant corridors in India to bulldozed koala eucalyptus groves in Australia , animals are losing their habitats at a startling rate. Help make a difference by respecting natural landscapes and participating in habitat restoration projects. Like all environmental issues, we also need large scale government action to help save endangered species. Support international and local wildlife protection legislation like the Endangered Species Act, and vote for candidates who advocate for conservation.  

2. Human-wildlife conflict 

Today’s human-dominated landscapes can make it difficult for animals to find abundant habitat and resources. Conflict — real or perceived — between people and wildlife looks different all around the world. For people in Malawi, conflict may include unexpected encounters with large animals like leopards, crocodiles, and hippos that cause serious injury - sometimes leading to retaliatory killing of wildlife. In India, community members face conflict with elephants who graze on crops and cause great economic loss. Across Canada and the United States, government programs kill thousands of wolves, beavers, bobcats, and bears through unscientific poisoning and cull initiatives. Throughout the COVID-19 pandemic, closed cities and quieter communities led to more accounts of wildlife sightings as animals came out of hiding. In this ever-changing world, it’s important that we understand the role of wildlife and learn how to respect all species so we can better coexist.  

Human wellbeing and wildlife protection are interconnected. When animals are treated with respect and able to play their natural role in the environment, humans benefit greatly. Ecosystems heal, lifestyles improve, eco-tourism thrives, and we get to appreciate the intrinsic beauty of wildlife. 

  • In urban areas and neighborhoods, approaches to human-wildlife coexistence can be as simple as using animal-proof trash cans and walking pets on leashes. 
  • In rural areas, sustainable measures may include installing fencing around crops, training wildlife rangers, and securing wildlife corridors where animals can safely migrate without human encounters. 

Coexistence is possible and there are countless innovative solutions that promote the wellbeing of animals and humans.   

3. Ocean noise and vessel strikes  

These days, most of us can order an item online with the click of a button—but what comes as a convenience to us is a danger to wildlife. The majority of the world’s products are transported by large cargo ships, and unfortunately, they are threatening the lives of marine animals. Ships and other industrial activity produce sound waves known as ocean noise pollution that create a maze of noise and disorient marine animals. Ocean noise pollution can prevent animals like dolphins and whales from communicating, hunting, and finding mates. In some cases, it can even lead to immense stress and death. Another issue facing marine animals is ship strikes and collisions of all sizes. Blunt trauma from propeller strikes and ship collisions can cause internal injury, sliced fluke tails, and a slow death for whales. For the case of the North Atlantic right whale , ship strikes are pushing the species to extinction. 

  • Local consumerism is key to minimizing ocean noise and reliance on ships. Instead of purchasing items online which require shipping and plastic packaging, shop at local stores. 
  • If you do have to make an online purchase, skip the fast shipment option and choose consolidated packaging if you have more than one item. 
  • Reducing ship speeds is also a critical act for protecting marine mammals from ocean noise pollution and ship strikes. When ships operate at slower speeds, ocean noise reduces and the chance of vessel strikes drops drastically.

4. Plastic pollution 

An estimated eight million tons of plastic end up in our oceans every year , threatening the health of ecosystems, marine animals, and humans. Plastic debris can entangle marine animals , causing deep lacerations, starvation, and strangulation. Turtles are known to consume floating plastic bags (mistaking them for jellyfish) and 90% of all seabirds have consumed plastic. When plastics break down into microplastics, they are even more dangerous. Species lower on the food chain like fish, plankton, and oysters consume microplastics when filtering water. Toxins from the microplastics then get passed through the food web, reaching their way to large marine animals and humans. 

  • Choose a day to track all of the disposable plastic that you use from morning to night. 
  • After you’ve written a list, research and choose sustainable alternatives made out of material like wood, glass, or natural fibers. 
  • Replacement items could include reusable produce bags for bulk shopping, travel utensils to keep in your car, or reusable snack baggies - the list is endless. 
  • For times when you do purchase plastic, always recycle and do it correctly. Make sure you wash containers before throwing them in the bin and familiarize yourself with local recycling protocols. 

5. Intensive farming of animals   

Intensive farming—also known as factory farming—involves industrialized facilities utilizing confinement systems with high stocking densities. Not only does intensive farming cause immense suffering to millions of animals, but it also has a devastating environmental impact. The Food and Agriculture Organization report, Livestock's Long Shadow, found that 37% of the world's methane emissions come from factory farming. Untreated animal waste full of highly concentrated chemicals and bacteria is stored in giant manure lagoons that emit gases like carbon dioxide, methane, and ammonia. When overflow occurs from broken infrastructure or rain, the waste leaches into soil and causes dangerous threats to environmental and human health. This includes harmful algae blooms, contamination of drinking water, ammonia pollution, and pathogen outbreaks.  

 What you can do:  

  • Reduce your meat consumption by incorporating more vegetarian and vegan meals into your diet. Use it as an opportunity to explore new plant-based ingredients and recipes. 
  • Buy local produce and support local farms where animal welfare and environmental impact are prioritized. 
  • Educate yourself on the meanings of certifications and labeling , and advocate for better protection for farmed animals through new legislation propositions.   

6. Food waste  

Food waste and loss occurs along every step of food production, from farms to factories, to grocery stores and consumers. During production, waste happens when production exceeds demand, manufacturing damages product, and food spoils during transportation. On the consumer end, food waste occurs mainly from over-purchasing and throwing out blemished produce. The United States Department of Agriculture estimates that 30-40% of food in the United States goes to waste . All food has an ecological footprint. When we waste food, we waste the energy and natural resources that went into production, and contribute to landfills that produce greenhouse gases. 

  • Vegetables don’t need to be perfect. As long as the food isn't spoiled, blemishes and imperfections are safe to consume. 
  • Remember to take what you need and eat what you take. If you have a habit of over-purchasing food, try to actively buy less or donate to local food banks. 
  • Learn how to properly store and freeze food to make it last longer and save money. 
  • Consider starting a compost bin where leftover food scraps can turn into nutritious soil for your garden. Don’t have a garden of your own? Donate your compost soil to a nearby farm, urban garden, or school. 

Animals with the strongest bite: 9 jaw-dropping mammals, sharks, and reptiles

20 of the most endangered animals and wildlife in Africa

10 of the most endangered animals in Australia

Our work can’t get done without you. Please give what you can to help animals thrive.

Unfortunately, the browser you use is outdated and does not allow you to display the site correctly. Please install any of the modern browsers, for example:

What Are the Solutions to Climate Change?

Some solutions are big and will require billions in investment. Some are small and free. All are achievable.

A woman holds a lantern that is connected by a wire to a small solar panel held by a man to her left.

Bundei Hidreka (left), a member of the Orissa Tribal Women's Barefoot Solar Engineers Association, holds up a solar lantern in Tinginaput, India.

Abbie Trayler-Smith/DFID, CC BY-NC-ND 4.0

how can we solve the environmental problems

  • Share this page block

Thinking about climate change can be overwhelming. We’ve been aware of its causes for decades now, and all around us, we bear witness to its devastating effects on our communities and ecosystems.

But the good news is that we now know exactly what it will take to win the fight against climate change, and we’re making measurable, meaningful progress. Game-changing developments in clean energy, electric vehicle technology, and energy efficiency are emerging every single day. And countries—including Canada , China , India , and the United States —are coordinating and cooperating at levels never seen before in order to tackle the most pressing issue of our time.

The bottom line: If the causes and effects of our climate crisis are clearer than ever, so are the solutions.

Ending Our Reliance on Fossil Fuels

Greater energy efficiency, renewable energy, sustainable transportation, sustainable buildings, better forestry management and sustainable agriculture, conservation-based solutions, industrial solutions, technological solutions, our choices.

The single-most important thing that we can do to combat climate change is to drastically reduce our consumption of fossil fuels . The burning of coal, oil, and natural gas in our buildings, industrial processes, and transportation is responsible for the vast majority of emissions that are warming the planet —more than 75 percent . In addition to altering the climate , dirty energy also comes with unacceptable ecological and human health impacts.

We must replace coal, oil, and gas with renewable and efficient energy sources. Thankfully, with each passing year, clean energy is making gains as technology improves and production costs go down. But in order to meet the goal of reducing global carbon emissions by at least 45 percent below 2010 levels before 2030—which scientists tell us we must do if we’re to avoid the worst, deadliest impacts of climate change—we must act faster.

There are promising signs. Wind and solar continue to account for ever-larger shares of electricity generation. In 2021, wind and solar generated a record 10 percent of electricity worldwide. And modeling by NRDC has found that wind, solar, hydro, and nuclear could account for as much as 80 percent of U.S. electricity by the end of this decade . (We can also fully realize our clean energy potential if we invest in repairing our aging grid infrastructure and installing new transmission lines.) While this transformation is taking place, automakers—as well as governments—are preparing for a future when the majority of vehicles on the road will produce zero emissions.

A man stands on a green lawn in front of a white house, spraying water from a hose onto a metal panel on the grass in front of him.

Technicians from Solaris Energy carry out the first-annual servicing and cleaning on a heat pump that was installed into a house originally built in the 1930s, in Folkestone, United Kingdom.

Andrew Aitchison / In pictures via Getty Images

Energy efficiency has been referred to as “the first fuel”; after all, the more energy efficient our systems are, the less actual fuel we have to consume, whether rooftop solar energy or gas power. Considered this way, efficiency is our largest energy resource. As the technology harnessing it has advanced over the past 40 years, efficiency has contributed more to the United States’s energy needs than oil, coal, gas, or nuclear power.

What’s more, energy efficiency strategies can be applied across multiple sectors: in our power plants, electrical grids, factories, vehicles, buildings, home appliances, and more. Some of these climate-friendly strategies can be enormously complex, such as helping utility companies adopt performance-based regulation systems , in which they no longer make more money simply by selling more energy but rather by improving the services they provide. Other strategies are extraordinarily simple. For example, weatherproofing buildings, installing cool roofs , replacing boilers and air conditioners with super-efficient heat pumps , and yes, switching out light bulbs from incandescent to LED can all make a big dent in our energy consumption.

Transitioning from fossil fuels to clean energy is the key to winning the fight against climate change. Here are the most common sources of renewable energy —and one source of decidedly nonrenewable energy that often gets included (falsely) in the list.

A worker in a hard hat stands in front of a building with rooftop solar panels.

Engineer Steve Marchi and his team perform a final review of rooftop solar panels as part of the solar expansion project at the Wayne National Forest Welcome Center, in Ohio.

Alex Snyder/Wayne National Forest

Solar energy

Solar energy is produced when light from the sun is absorbed by photovoltaic cells and turned directly into electricity. The solar panels that you may have seen on rooftops or at ground level are made up of many of these cells working together. By 2030, at least one in seven U.S. homes is projected to have rooftop solar panels, which emit no greenhouse gases or other pollutants, and which generate electricity year-round ( in hot or cold weather ) so long as the sun is shining. Solar energy currently accounts for just under 3 percent of the electricity generated in the United States—enough to power 18 million homes —but is growing at a faster rate than any other source. By 2035, it could account for as much as 40 percent of electricity generation. From 2020 through 2026, solar will account for more than half of new electricity generation worldwide.

What to do when the sun doesn’t shine, you might ask. Alongside the boom in solar has been a surge in companion battery storage: More than 93 percent of U.S. battery capacity added in 2021 was paired with solar power plants. Battery storage is key to the clean energy revolution—and adapting to a warming world. Not only are batteries important at night when the sun isn’t out, but on hot days when homes draw a lot of electricity to power air conditioners, battery storage can help manage the energy demand and control the threat of power failures.

Three wind turbines stand in rough seas with a wave cresting in front of them.

Turbines on Block Island Wind Farm, located 3.8 miles from Block Island, Rhode Island, in the Atlantic Ocean

Dennis Schroeder/NREL, 40481

Wind energy

Unlike solar panels, which convert the sun’s energy directly into electricity, wind turbines produce electricity more conventionally: wind turns the blades of a turbine, which spin a generator. Currently, wind accounts for just above 9 percent of U.S. electricity generation, but it, like solar, is growing fast as more states and utilities come to recognize its ability to produce 100 percent clean energy at a remarkably low cost. Unsurprisingly, states with plenty of wide-open space—including Kansas , Oklahoma , and Texas —have huge capacity when it comes to wind power, but many analysts believe that some of the greatest potential for wind energy exists just off our coasts. Offshore wind even tends to ramp up in the evenings when home electricity use jumps, and it can produce energy during the rainy and cloudy times when solar energy is less available. Smart planning and protective measures , meanwhile, can ensure we harness the massive promise of offshore wind while limiting or eliminating potential impacts on wildlife.

Steam rises off blue water in front of a power plant with four stacks

Svartsengi geothermal power plant in Iceland

Daniel Snaer Ragnarsson/iStock

Geothermal and hydroelectric energy

Along with sunlight and wind, water—under certain conditions—can also be a source of renewable energy. For instance, geothermal energy works by drilling deep underground and pumping extremely hot water up to the earth’s surface, where it is then converted to steam that, once pressurized, spins a generator to create electricity. Hydroelectric energy uses gravity to “pull” water downward through a pipe at high speeds and pressures; the force of this moving water is used to spin a generator’s rotor.

Humans have been harnessing heat energy from below the earth’s surface for eons—just think of the hot springs that provided warmth for the people of ancient Rome. Today’s geothermal plants are considered clean and renewable so long as the water and steam they bring up to the surface is redeposited underground after use. Proper siting of geothermal projects is also important, as recent science has linked some innovative approaches to geothermal to an increased risk of earthquakes .

Hydroelectric plants, when small-scale and carefully managed, represent a safe and renewable source of energy. Larger plants known as mega-dams, however, are highly problematic . Their massive footprint can disrupt the rivers on which people and wildlife depend .

Biomass energy

With very few exceptions, generating electricity through the burning of organic material like wood (sourced largely from pine and hardwood forests in the United States), agricultural products, or animal waste—collectively referred to as biomass —does little to reduce carbon emissions, and in fact, does far more environmental harm than good. Unfortunately, despite numerous studies that have revealed the true toll of this form of bioenergy , some countries continue to buy the biomass industry’s false narrative and subsidize these projects. Attitudes are changing but, given the recent wood pellet boom, there is a lot more work to be done.

A bus drives down a city street with high rise buildings in the background

A new electric bus on King Street in Honolulu, on June 16, 2021

Marco Garcia for NRDC

Transportation is a top source of greenhouse gases (GHG), so eliminating pollution from the billions of vehicles driving across the planet is essential to achieving net-zero global emissions by 2050, a goal laid out in the 2015 Paris climate agreement .

In 2021, electric vehicles (EVs) accounted for less than 8 percent of vehicle sales globally; by 2035 , however, it’s estimated that they’ll account for more than half of all new sales. Governments around the world aren’t just anticipating an all-electric future; they’re bringing it into fruition by setting goals and binding requirements to phase out the sale of gas-powered internal combustion engine (ICE) vehicles. That year, 2035, is expected to mark a turning point in the adoption of EVs and in the fight against climate change as countries around the world—as well as numerous automakers—have announced goals to phase out gas-powered cars and light trucks . This shift will also benefit our grid: EVs are like a “ battery on wheels ” and have the potential to supply electricity back to the network when demand peaks, helping to prevent blackouts.

It’s also critical that we consider all of the different ways we get around and build sustainability into each of them. By increasing access to public transportation—such as buses, ride-sharing services, subways, and streetcars—as well as embracing congestion pricing , we can cut down on car trips and keep millions of tons of carbon dioxide out of the atmosphere every year. And by encouraging zero-emission forms of transportation, such as walking and biking, we can reduce emissions even more. Boosting these alternate forms of transportation will require more than just talk. They require funding , planning, and the building out of supportive infrastructure by leaders across the local, state, and national levels.

To address the full set of impacts of the transportation sector, we need holistic and community-led solutions around things like land-use policies and the way we move consumer goods. Communities closest to ports , truck corridors, rail yards, and warehouses are exposed to toxic diesel emissions and face a high risk of developing acute and chronic public health diseases. Like all climate solutions, long-lasting change in the transportation sector requires building the power of historically marginalized communities.

A worker stands at a window in a room with plastic sheeting hanging from the ceiling and covering furniture

An Association for Energy Affordability (AEA) worker installs a new energy-efficient window at an apartment in the South Bronx, New York City.

Natalie Keyssar for NRDC

The energy used in our buildings—to keep the lights on and appliances running; to warm them and cool them; to cook and to heat water—makes them the single-largest source of carbon pollution in most cities across the United States. Making buildings more energy efficient, by upgrading windows and adding insulation to attics and walls, for example, will bring these numbers down. That’s why it’s all the more important that we raise public awareness of cost- and carbon-saving changes that individuals can make in their homes and workplaces, and make it easier for people to purchase and install energy-efficient technology, such as heat pumps (which can both heat and cool spaces) and certified appliances through programs like Energy Star in the United States or EnerGuide in Canada.

Beyond the measures that can be taken by individuals, we need to see a dedication from private businesses and governments to further building decarbonization , which simply means making buildings more efficient and replacing fossil fuel–burning systems and appliances with clean-powered ones. Policy tools can help get us there, including city and state mandates that all newly constructed homes, offices, and other buildings be outfitted with efficient all-electric systems for heating, cooling, and hot water; requirements that municipalities and states meet the latest and most stringent energy conservation standards when adopting or updating their building codes would also be impactful. Indeed, many places around the world are implementing building performance standards , which require existing buildings to reduce their energy use or carbon emissions over time. Most important, if these changes are going to reach the scale needed, we must invest in the affordable housing sector so that efficient and decarbonized homes are accessible to homeowners and renters of all incomes .

A young man stands on a rocky shore holding a rope attached to a red canoe on the water in front of him

Nicolas Mainville joins a canoe trip with youth from the Cree First Nation of Waswanipi on a river in Waswanipi Quebec, Canada, which is part of the boreal forest.

Nicolas Mainville/Greenpeace

Some of our strongest allies in the fight against climate change are the trees, plants, and soil that store massive amounts of carbon at ground level or underground. Without the aid of these carbon sinks , life on earth would be impossible, as atmospheric temperatures would rise to levels more like those found on Venus .

But whenever we clearcut forests for timber or rip out wetlands for development, we release that climate-warming carbon into the air. Similarly, the widespread overuse of nitrogen-based fertilizers (a fossil fuel product) on cropland and generations of industrial-scale livestock farming practices have led to the release of unprecedented amounts of nitrous oxide and methane, powerful greenhouse gases, into our atmosphere.

We can’t plant new trees fast enough to replace the ones we clearcut in carbon-storing forests like the Canadian boreal or the Amazon rainforest —nor can rows of spindly young pines serve the same function as old-growth trees. We need a combination of responsible forestry policies, international pressure, and changes in consumer behavior to put an end to deforestation practices that not only accelerate climate change but also destroy wildlife habitat and threaten the health and culture of Indigenous communities that live sustainably in these verdant spaces. At the same time, we need to treat our managed landscapes with as much care as we treat wild ones. For instance, adopting practices associated with organic and regenerative agriculture —cover crops, pesticide use reduction, rotational grazing, and compost instead of synthetic fertilizers—will help nurture the soil, yield healthier foods, and pay a climate dividend too.

Many small fish swim in clear waters near a large tree with roots extending below the water's surface

A school of fish swimming through a mangrove forest in the Caribbean Sea, off Belize

Intact ecosystems suck up and store vast amounts of carbon: Coastal ecosystems like wetlands and mangroves accumulate and store carbon in their roots; our forests soak up about a third of annual fossil fuel emissions; and freshwater wetlands hold between 20 and 30 percent of all the carbon found in the world’s soil. It’s clear we’re not going to be able to address climate change if we don’t preserve nature.

This is one reason why, along with preserving biodiversity, climate experts are calling on global leaders to fully protect and restore at least 30 percent of land, inland waters, and oceans by 2030 , a strategy endorsed by the Intergovernmental Panel on Climate Change. To help us reach that goal, we must limit industrial impacts on our public lands and waters, continue to protect natural landscapes, support the creation of marine protected areas, uphold bedrock environmental laws, and follow the lead of Indigenous Peoples, many of whom have been faithfully and sustainably stewarding lands and waters for millennia .

Gray and black smoke rise out of stacks on an industrial facility, with homes visible in the background.

Emissions rise from the Edgar Thomson Steel Works, a steel mill in the Braddock and North Braddock communities near Pittsburgh, Pennsylvania.

Getty Images

Heavy industry—the factories and facilities that produce our goods—is responsible for a quarter of GHG emissions in the United States and 40 percent globally. Most industrial emissions come from making a small set of carbon-intensive products: basic chemicals, iron and steel, cement, aluminum, glass, and paper. (Industrial plants are also often major sources of air and water pollutants that directly affect human health.)

Complicating matters is the fact that many industrial plants will stay in operation for decades, so emissions goals for 2050 are really just one investment cycle away. Given these long horizons for building and retrofitting industrial sites, starting investments and plans now is critical. What would successfully decarbonized industrial processes look like? They should sharply reduce heavy industry’s climate emissions , as well as local pollution. They should be scalable and widely available in the next decade, especially so that less developed nations can adopt these cleaner processes and grow without increasing emissions. And they should bolster manufacturing in a way that creates good jobs.

Technology alone won’t save us from climate change (especially not some of these risky geoengineering proposals ). But at the same time, we won’t be able to solve the climate crisis without researching and developing things like longer-lasting EV batteries , nonpolluting hydrogen-based solutions , and reliable, safe, and equitable methods for capturing and sequestering carbon . Because, while these tools hold promise, we have to make sure we don’t repeat the mistakes of the past. For instance, we can take actions to reduce local harms from mining lithium (a critical component of electric vehicle batteries), improve recycling opportunities for solar cells, and not use carbon capture as an excuse to pollute. To accelerate research and development, funding is the critical third leg of the stool: Governments must make investing in clean energy technologies a priority and spur innovation through grants, subsidies, tax incentives, and other rewards.

A group of protesters hold signs in front of a large banner reading "Charmin: Stop Flushing Our Forests"

A protester rings a bell in front of P&G’s headquarters in Cincinnati; the company’s toilet paper brand, Charmin, uses wood pulp from virgin trees in Canada's boreal forest.

Finally, it should go without saying that we, as individuals, are key to solving the climate crisis—not just by continuing to lobby our legislators and speak up in our communities but also by taking climate actions in our daily lives . By switching off fossil fuels in our homes and being more mindful of the climate footprint of the food we eat, our shopping habits, how we get around, our use of plastics and fossil fuels, and what businesses we choose to support (or not to support), we can move the needle.

But it’s when we act collectively that real change happens—and we can do even more than cut down on carbon pollution. Communities banding together have fought back fracking , pipelines , and oil drilling in people’s backyards . These local wins aren’t just good news for our global climate but they also protect the right to clean air and clean water for everyone. After all, climate change may be a global crisis but climate action starts in your own hometown .

We have a responsibility to consider the implications of our choices—and to make sure that these choices are actually helping to reduce the burdens of climate change, not merely shifting them somewhere else. It’s important to remember that the impacts of climate change —which intersect with and intensify so many other environmental, economic, and social issues—fall disproportionately on certain communities, namely low-income communities and communities of color. That’s why our leaders have a responsibility to prioritize the needs of these communities when crafting climate policies. If those on the frontlines aren’t a part of conversations around climate solutions, or do not feel the benefits of things like cleaner air and better job opportunities, then we are not addressing the roots of the climate crisis.

This NRDC.org story is available for online republication by news media outlets or nonprofits under these conditions: The writer(s) must be credited with a byline; you must note prominently that the story was originally published by NRDC.org and link to the original; the story cannot be edited (beyond simple things such as grammar); you can’t resell the story in any form or grant republishing rights to other outlets; you can’t republish our material wholesale or automatically—you need to select stories individually; you can’t republish the photos or graphics on our site without specific permission; you should drop us a note to let us know when you’ve used one of our stories.

We need climate action to be a top priority in Washington!

Tell President Biden and Congress to slash climate pollution and reduce our dependence on fossil fuels.

how can we solve the environmental problems

Urge President Biden and Congress to make equitable climate action a top priority in 2024

Related stories.

how can we solve the environmental problems

How to Find Relief During Summer Heat Waves in the City

A river runs through a valley between mountains, with brown banks visible on either side of the water

What Are the Causes of Climate Change?

how can we solve the environmental problems

How to Ditch the Biggest Fossil Fuel Offenders in Your Life

When you sign up, you’ll become a member of NRDC’s Activist Network. We will keep you informed with the latest alerts and progress reports.

November 26, 2007

10 Solutions for Climate Change

Ten possibilities for staving off catastrophic climate change

By David Biello

how can we solve the environmental problems

Mark Garlick Getty Images

The enormity of global warming can be daunting and dispiriting. What can one person, or even one nation, do on their own to slow and reverse climate change ? But just as ecologist Stephen Pacala and physicist Robert Socolow, both at Princeton University, came up with 15 so-called " wedges " for nations to utilize toward this goal—each of which is challenging but feasible and, in some combination, could reduce greenhouse gas emissions to safer levels —there are personal lifestyle changes that you can make too that, in some combination, can help reduce your carbon impact. Not all are right for everybody. Some you may already be doing or absolutely abhor. But implementing just a few of them could make a difference.

Forego Fossil Fuels —The first challenge is eliminating the burning of coal , oil and, eventually, natural gas. This is perhaps the most daunting challenge as denizens of richer nations literally eat, wear, work, play and even sleep on the products made from such fossilized sunshine. And citizens of developing nations want and arguably deserve the same comforts, which are largely thanks to the energy stored in such fuels.

On supporting science journalism

If you're enjoying this article, consider supporting our award-winning journalism by subscribing . By purchasing a subscription you are helping to ensure the future of impactful stories about the discoveries and ideas shaping our world today.

Oil is the lubricant of the global economy, hidden inside such ubiquitous items as plastic and corn, and fundamental to the transportation of both consumers and goods. Coal is the substrate, supplying roughly half of the electricity used in the U.S. and nearly that much worldwide—a percentage that is likely to grow, according to the International Energy Agency. There are no perfect solutions for reducing dependence on fossil fuels (for example, carbon neutral biofuels can drive up the price of food and lead to forest destruction, and while nuclear power does not emit greenhouse gases, it does produce radioactive waste), but every bit counts.

So try to employ alternatives when possible—plant-derived plastics, biodiesel, wind power—and to invest in the change, be it by divesting from oil stocks or investing in companies practicing carbon capture and storage.

Infrastructure Upgrade —Buildings worldwide contribute around one third of all greenhouse gas emissions (43 percent in the U.S. alone), even though investing in thicker insulation and other cost-effective, temperature-regulating steps can save money in the long run. Electric grids are at capacity or overloaded, but power demands continue to rise. And bad roads can lower the fuel economy of even the most efficient vehicle. Investing in new infrastructure, or radically upgrading existing highways and transmission lines, would help cut greenhouse gas emissions and drive economic growth in developing countries.

Of course, it takes a lot of cement, a major source of greenhouse gas emissions, to construct new buildings and roads. The U.S. alone contributed 50.7 million metric tons of carbon dioxide to the atmosphere in 2005 from cement production, which requires heating limestone and other ingredients to 1,450 degrees Celsius (2,642 degrees Fahrenheit). Mining copper and other elements needed for electrical wiring and transmission also causes globe-warming pollution.

But energy-efficient buildings and improved cement-making processes (such as using alternative fuels to fire up the kiln) could reduce greenhouse gas emissions in the developed world and prevent them in the developing world.

Move Closer to Work —Transportation is the second leading source of greenhouse gas emissions in the U.S. (burning a single gallon of gasoline produces 20 pounds of CO 2 ). But it doesn't have to be that way.

One way to dramatically curtail transportation fuel needs is to move closer to work, use mass transit, or switch to walking, cycling or some other mode of transport that does not require anything other than human energy. There is also the option of working from home and telecommuting several days a week.

Cutting down on long-distance travel would also help, most notably airplane flights, which are one of the fastest growing sources of greenhouse gas emissions and a source that arguably releases such emissions in the worst possible spot (higher in the atmosphere). Flights are also one of the few sources of globe-warming pollution for which there isn't already a viable alternative: jets rely on kerosene, because it packs the most energy per pound, allowing them to travel far and fast, yet it takes roughly 10 gallons of oil to make one gallon of JetA fuel. Restricting flying to only critical, long-distance trips—in many parts of the world, trains can replace planes for short- to medium-distance trips—would help curb airplane emissions.

Consume Less —The easiest way to cut back on greenhouse gas emissions is simply to buy less stuff. Whether by forgoing an automobile or employing a reusable grocery sack, cutting back on consumption results in fewer fossil fuels being burned to extract, produce and ship products around the globe.

Think green when making purchases. For instance, if you are in the market for a new car, buy one that will last the longest and have the least impact on the environment. Thus, a used vehicle with a hybrid engine offers superior fuel efficiency over the long haul while saving the environmental impact of new car manufacture.

Paradoxically, when purchasing essentials, such as groceries, buying in bulk can reduce the amount of packaging—plastic wrapping, cardboard boxes and other unnecessary materials. Sometimes buying more means consuming less.

Be Efficient —A potentially simpler and even bigger impact can be made by doing more with less. Citizens of many developed countries are profligate wasters of energy, whether by speeding in a gas-guzzling sport-utility vehicle or leaving the lights on when not in a room.

Good driving—and good car maintenance, such as making sure tires are properly inflated—can limit the amount of greenhouse gas emissions from a vehicle and, perhaps more importantly, lower the frequency of payment at the pump.

Similarly, employing more efficient refrigerators, air conditioners and other appliances, such as those rated highly under the U.S. Environmental Protection Agency's Energy Star program, can cut electric bills while something as simple as weatherproofing the windows of a home can reduce heating and cooling bills. Such efforts can also be usefully employed at work, whether that means installing more efficient turbines at the power plant or turning the lights off when you leave the office .

Eat Smart, Go Vegetarian? —Corn grown in the U.S. requires barrels of oil for the fertilizer to grow it and the diesel fuel to harvest and transport it. Some grocery stores stock organic produce that do not require such fertilizers, but it is often shipped from halfway across the globe. And meat, whether beef, chicken or pork, requires pounds of feed to produce a pound of protein.

Choosing food items that balance nutrition, taste and ecological impact is no easy task. Foodstuffs often bear some nutritional information, but there is little to reveal how far a head of lettuce, for example, has traveled.

University of Chicago researchers estimate that each meat-eating American produces 1.5 tons more greenhouse gases through their food choice than do their vegetarian peers. It would also take far less land to grow the crops necessary to feed humans than livestock, allowing more room for planting trees.

Stop Cutting Down Trees —Every year, 33 million acres of forests are cut down . Timber harvesting in the tropics alone contributes 1.5 billion metric tons of carbon to the atmosphere. That represents 20 percent of human-made greenhouse gas emissions and a source that could be avoided relatively easily.

Improved agricultural practices along with paper recycling and forest management—balancing the amount of wood taken out with the amount of new trees growing—could quickly eliminate this significant chunk of emissions.

And when purchasing wood products, such as furniture or flooring, buy used goods or, failing that, wood certified to have been sustainably harvested. The Amazon and other forests are not just the lungs of the earth, they may also be humanity's best short-term hope for limiting climate change.

Unplug —Believe it or not, U.S. citizens spend more money on electricity to power devices when off than when on. Televisions, stereo equipment, computers, battery chargers and a host of other gadgets and appliances consume more energy when seemingly switched off, so unplug them instead.

Purchasing energy-efficient gadgets can also save both energy and money—and thus prevent more greenhouse gas emissions. To take but one example, efficient battery chargers could save more than one billion kilowatt-hours of electricity—$100 million at today's electricity prices—and thus prevent the release of more than one million metric tons of greenhouse gases.

Swapping old incandescent lightbulbs for more efficient replacements, such as compact fluorescents (warning: these lightbulbs contain mercury and must be properly disposed of at the end of their long life), would save billions of kilowatt-hours. In fact, according to the EPA, replacing just one incandescent lightbulb in every American home would save enough energy to provide electricity to three million American homes.

One Child —There are at least 6.6 billion people living today, a number that is predicted by the United Nations to grow to at least nine billion by mid-century. The U.N. Environmental Program estimates that it requires 54 acres to sustain an average human being today—food, clothing and other resources extracted from the planet. Continuing such population growth seems unsustainable.

Falling birth rates in some developed and developing countries (a significant portion of which are due to government-imposed limits on the number of children a couple can have) have begun to reduce or reverse the population explosion. It remains unclear how many people the planet can comfortably sustain, but it is clear that per capita energy consumption must go down if climate change is to be controlled.

Ultimately, a one child per couple rule is not sustainable either and there is no perfect number for human population. But it is clear that more humans means more greenhouse gas emissions.

Future Fuels —Replacing fossil fuels may prove the great challenge of the 21st century. Many contenders exist, ranging from ethanol derived from crops to hydrogen electrolyzed out of water, but all of them have some drawbacks, too, and none are immediately available at the scale needed.

Biofuels can have a host of negative impacts, from driving up food prices to sucking up more energy than they produce. Hydrogen must be created, requiring either reforming natural gas or electricity to crack water molecules. Biodiesel hybrid electric vehicles (that can plug into the grid overnight) may offer the best transportation solution in the short term, given the energy density of diesel and the carbon neutral ramifications of fuel from plants as well as the emissions of electric engines. A recent study found that the present amount of electricity generation in the U.S. could provide enough energy for the country's entire fleet of automobiles to switch to plug-in hybrids , reducing greenhouse gas emissions in the process.

But plug-in hybrids would still rely on electricity, now predominantly generated by burning dirty coal. Massive investment in low-emission energy generation, whether solar-thermal power or nuclear fission , would be required to radically reduce greenhouse gas emissions. And even more speculative energy sources—hyperefficient photovoltaic cells, solar energy stations in orbit or even fusion—may ultimately be required.

The solutions above offer the outline of a plan to personally avoid contributing to global warming. But should such individual and national efforts fail, there is another, potentially desperate solution:

Experiment Earth —Climate change represents humanity's first planetwide experiment. But, if all else fails, it may not be the last. So-called geoengineering , radical interventions to either block sunlight or reduce greenhouse gases, is a potential last resort for addressing the challenge of climate change.

Among the ideas: releasing sulfate particles in the air to mimic the cooling effects of a massive volcanic eruption; placing millions of small mirrors or lenses in space to deflect sunlight; covering portions of the planet with reflective films to bounce sunlight back into space; fertilizing the oceans with iron or other nutrients to enable plankton to absorb more carbon; and increasing cloud cover or the reflectivity of clouds that already form.

All may have unintended consequences, making the solution worse than the original problem. But it is clear that at least some form of geoengineering will likely be required: capturing carbon dioxide before it is released and storing it in some fashion, either deep beneath the earth, at the bottom of the ocean or in carbonate minerals. Such carbon capture and storage is critical to any serious effort to combat climate change.

Additional reporting by Larry Greenemeier and Nikhil Swaminathan .

About . Click to expand section.

  • Our History
  • Team & Board
  • Transparency and Accountability

What We Do . Click to expand section.

  • Cycle of Poverty
  • Climate & Environment
  • Emergencies & Refugees
  • Health & Nutrition
  • Livelihoods
  • Gender Equality
  • Where We Work

Take Action . Click to expand section.

  • Attend an Event
  • Partner With Us
  • Fundraise for Concern
  • Work With Us
  • Leadership Giving
  • Humanitarian Training
  • Newsletter Sign-Up

Donate . Click to expand section.

  • Give Monthly
  • Donate in Honor or Memory
  • Leave a Legacy
  • DAFs, IRAs, Trusts, & Stocks
  • Employee Giving

Ten solutions to climate change that will actually make a difference

Jun 20, 2022

Man inspecting his papaya fruits on his farm (seeds provided by Concern).

At this point we need solutions bigger than any one person. But that doesn’t tell the whole story.

There are a lot of differing opinions on whether it's too late to climate change — and, if it's not the best way of going about it. Some say recycling is useless and that individual action means nothing against the larger policy reforms that need to happen. This is, in part, true — although you should absolutely still be recycling. But it doesn’t tell the whole story, and it doesn’t help those who are currently on the frontlines of the climate crisis. Here, we break down 10 solutions to climate change that will actually make a difference — and how you can help make them all a reality.

Stand with the people most affected by climate change

1. shift to renewable energy sources in all key sectors.

The United Nations identified a six-sector solution to climate change, focusing on actions that can be taken by the energy, industry, agriculture, transportation, nature-based solutions, and urban planning. If all of these actions are completed, the UN Environment Programme estimates we could reduce global carbon emissions by 29 to 32 gigatonnes, thereby limiting the global temperature rise to 1.5º C.

One key element of this plan is shifting to renewable energy sources, both at home and at work. “We have the necessary technology to make this reduction by shifting to renewable energy and using less energy,” the UNEP writes of our personal energy consumption (generally, fossil fuels power our homes, keeping the lights on, our rooms warm, and Netflix streaming). But the energy usage of the industrial sector also plays a key role: Addressing issues like methane leaks and switching at large scale to passive or renewable energy-based heating and cooling systems could reduce industrial carbon emissions by 7.3 gigatonnes every year.

Graphic of the United Nations Environment Program's Six Sector Solution to Climate Change

2. Reduce food loss and waste and shift to more sustainable diets

There are a few different ways that climate change and hunger go hand-in-hand. Whether it’s kale or Kobe beef, producing food accounts for some measure of greenhouse gasses. In 2021, the Food and Agriculture Organization estimated we consumed more meat than ever before . By 2050 this will, by some estimates, increase greenhouse gas emissions from food production by 60%. Likewise, many farmers use nitrous-based fertilizers to grow more crops, more quickly to meet demand.

It’s important to reduce food waste at every step of the food system . For us as consumers, we can commit to eating what we buy and composting what we don’t get to in time. We can also switch our focus to plant-based and other sustainable diets, supporting farms that use organic fertilizers and making beef and other meat products the exception rather than the rule at the dinner table.

Woman and her vegetables for sale at the central market of the town of Manono, Tanganyika Province.

3. Halt deforestation and commit to rebuilding damaged ecosystems

The rapid deforestation of the Earth, especially over the last 60 years, has contributed to climate change, creating “heat islands” out of land that would normally be protected by trees and other flora from overheating. Simply put, this has to stop. There are actions each of us can take as individuals to help halt this—going paperless and buying recycled paper products, planting trees or supporting organizations that do this (like Concern ), and recycling.

But change has to happen at a larger scale here. Illegal logging happens both in the United States and abroad. Last year, world leaders committed to halting this and other harmful practices by 2030 as part of COP26. You can help by holding your own elected leaders to account.

A tree nursery in Bangladesh

4. Embrace electric vehicles, public transport, and other non-motorized options for getting around

The carbon savings on junking your current car in favor of an electric model are basically nullified if you aren’t seriously in the market for a new vehicle. However, mass adoption of electric vehicles and public transport — along with walking, biking, skating, and scooting — is key to cutting the greenhouse gas emissions from fuel-based motor vehicles.

Woman riding a bicycle with a man standing behind her

This is another issue you can raise with elected officials. Earlier this year, for example, you may remember hearing that President Biden had been encouraging the US Postal System to adopt electric vans as part of its new fleet. This didn’t come to pass , but it’s changes like these — changes beyond any one person’s transportation method — that need to happen. You can call on your representatives to support these switchovers for delivery vehicles, cab and taxi fleets, ambulances, and other auto-centric services. Or, if your city or town lacks decent public transportation or enough bike lanes or sidewalks to make those alternatives to driving, lobby for those.

5. Subsidize low-carbon alternatives for urban planning

In tandem with low-carbon alternatives for public transportation, governments need to commit to similar measures with our growing cities. New buildings mean a new opportunity to reward green design methods that help to decrease the strain on urban resources, whether they’re apartments or entertainment venues. (Fun fact: The Stavros Niarchos Cultural Center in Athens runs almost entirely off of solar panels during the bright and sunny summer months. ) In cities like New York, we’ve seen the toll that excessive power use can take through rolling blackouts and brown-outs, especially in the summer months. Changes to public infrastructure that reduce our reliance on the power grid will help to keep the system from becoming untenably overloaded.

A solar-powered water point in Marsabit, Kenya

6. Strengthen resilience and climate adaptation methods in MAPA communities

So far, we’ve looked at solutions to climate change that can take place within our own homes and communities. However, these only go so far to mitigate the damage that the climate crisis has already inflicted on a large portion of the world. The most affected people and areas (MAPAs) are largely in the Global South. Many are located in low-income countries without the resources or infrastructure to respond and adapt to climate disasters, even as they become more frequent and destructive.

Countries like the United States and organizations responding to the climate crisis must support MAPA communities, particularly the most vulnerable, in developing and carrying out strategies specific to context and designed to bolster resilience where it’s needed most. Often these communities know what needs to be done to mitigate the effects of climate change, and they simply need to be supported with access to additional research and meteorological data, new technologies, and funding.

how can we solve the environmental problems

What we talk about when we talk about resilience

The word “resilience” has taken on new meanings and contexts in recent years, but at Concern it still has a specific definition relating to our emergency and climate response. Here’s what we mean when we use it.

7. Address poverty and other inequalities that increase vulnerability

The tem MAPA can also apply to individuals within a community. Women, disabled people, children, the elderly, people living in poverty, indigenous peoples, and LGBTQIA+ people are among those who are most likely to be hit harder by climate change because of preexisting societal marginalization. This is why it’s critical that they also have a seat at the decision-making table when it comes to solutions to climate change within their own communities. Ending poverty and the other systemic inequalities that give some people greater access to resources than others will help to offset some of the greatest threats posed by the climate crisis.

Esime Jenaia, a Lead Farmer for conservation Agriculture, at her plot in Chituke village, Mangochi, Malawi, with neighbor Esnart Kasimu. Concern has been carrying out Conservation Agriculture and livelihoods programming in Malawi since 2012, with the assistance of Accenture Ireland.

8. Invest in disaster risk reduction (DRR)

Disaster Risk Reduction (otherwise known as DRR) protects the lives and livelihoods of communities and individuals who are most vulnerable to disasters or emergencies. Whether the crisis is caused by nature or humans (or a combination of both), DRR limits its negative impact on those who stand to lose the most.

We can’t undo much of climate change’s impact so far, but we can help the communities who are hit hardest by these impacts to prepare for and respond to these emergencies once they strike.

9. Commit to fair financing and climate justice

Of course, DRR strategies and other resilience, adaptation, and mitigation practices cost money. Money that the countries most affected by climate change often lack. As part of a global commitment to climate justice , countries with the highest carbon footprints should be making restitution to those countries with lower footprints, countries that tend to be more vulnerable to global warming.

Countries like the United States must increase investments in disaster prevention and DRR strategies, such as early warning and response systems, forecast-based financing mechanisms, and adapted infrastructure. What’s more, these funds need to be made rapidly dispersible and flexible so that when emergency strikes, they can be accessed more quickly. Additional investment to prevent conflicts over the use of natural resources will also help countries facing both fragile political systems and a high risk for climate-related disasters.

how can we solve the environmental problems

Project Profile

Responding to Pakistan's Internally Displaced (RAPID)

RAPID is a funding program that allows Concern to quickly and efficiently deliver aid to people displaced by conflict or natural disaster.

10. Guarantee these changes in the long-term via policy reform

Few of the solutions listed above are not sustainable without policy reform. You can help by encouraging your elected officials to consider the above points, and to support bills that incorporate one or more of these solutions to climate change, many of which are currently being written and shared at the local and national levels.

Smart climate policy will prioritize people over corporations, consider the framework of climate justice — including land and water rights of indigenous peoples and rural communities, address the intersectional effects of climate change on hunger, poverty, and gender equality, and enforce regulatory frameworks and standards that commit people and institutions to honoring these new standards. Bold and aggressive action must be taken if we’re to reach the goal of not exceeding 1.5º C and mitigating the current effects of climate change by 2030. But it’s not a lost cause yet. It’s on all of us to now support those actions that are needed most.

Support Concern's climate response

Solutions to Climate Change in Action

how can we solve the environmental problems

Ten countries with water stress and scarcity — and how we're helping

how can we solve the environmental problems

Climate Smart Agriculture: Back to the basics to fight climate change and hunger

how can we solve the environmental problems

Ten of the countries most affected by climate change

Sign up for our newsletter.

Get emails with stories from around the world.

You can change your preferences at any time. By subscribing, you agree to the Terms of Use and Privacy Policy.

What can we do to slow or stop global warming?

There is no one-size-fits-all approach to stopping or slowing global warming, and each individual, business, municipal, state, tribal, and federal entity must weigh their options in light of their own unique set of circumstances.  Experts say  it is likely many strategies working together will be needed. Generally speaking, here are some examples of mitigation strategies we can use to slow or stop the human-caused global warming ( learn more ):

  • Where possible, we can switch to renewable sources of energy (such as solar and wind energy) to power our homes and buildings, thus emitting far less heat-trapping gases into the atmosphere.
  • Where feasible, we can drive electric vehicles instead of those that burn fossil fuels; or we can use mass transit instead of driving our own cars.
  • Where affordable, we can conserve energy by better insulating our homes and buildings, and by replacing old, failing appliances with more energy-efficient models.
  • Where practicable, we can counterbalance our annual carbon dioxide emissions by investing in commercial services that draw down an equal amount of carbon out of the atmosphere, such as through planting trees or  carbon capture and storage  techniques.
  • Where practical, we can support more local businesses that use and promote sustainable, climate-smart practices such as those listed above.
  • We can consider placing an upper limit on the amount of carbon dioxide we will allow ourselves to emit into the atmosphere within a given timeframe.

Note that NOAA doesn’t advocate for or against particular climate policies. Instead, NOAA’s role is to provide data and scientific information about climate, including how it has changed and is likely to change in the future depending on different climate policies or actions society may or may not take. More guidance on courses of action can be found in the National Academy of Sciences' 2010 report, titled  Informing an Effective Response to Climate Change . Also learn more  here,   here,  and  here .

Photo of Amtrak train sitting on tracks

Thanks to low friction between train wheels and tracks, and level train tracks with gradual turns, trains have high energy efficiency. Photo from National Park Service Amtrak Trails and Rails .

Stabilizing global temperature near its current level requires eliminating all emissions of heat-trapping gases or, equivalently, achieving a carbon-neutral society in which people remove as much carbon from the atmosphere as they emit. Achieving this goal will require substantial societal changes in energy technologies and infrastructure that go beyond the collective actions of individuals and households to reduce emissions.

We value your feedback

Help us improve our content

Image CAPTCHA

Related Content

News & features, after sandy: changes and choices, national climate assessment: states and cities are already reducing carbon emissions to save lives and dollars, improving models for wind energy, maps & data, land - terrestrial climate variables, climate forcing, precipitation - 1991-2020 monthly average, teaching climate, toolbox for teaching climate & energy, invitation to join other science centers in creating the next generation of sustainability leaders, how to host a youth climate summit: informational webinar on earth day, climate resilience toolkit, carbon balance, arctic oceans, sea ice, and coasts, arctic-global linkages.

  • International edition
  • Australia edition
  • Europe edition

The biggest threats to our natural world

The five biggest threats to our natural world … and how we can stop them

From destructive land use to invasive species, scientists have identified the main drivers of biodiversity loss – so that countries can collectively act to tackle them

  • Read more on the Cop15 talks to negotiate new UN targets to protect biodiversity in the coming decade
  • 1 Changes in land and sea use
  • 2 Direct exploitation of natural resources
  • 3 The climate crisis
  • 4 Pollution
  • 5 Invasive species

T he world’s wildlife populations have plummeted by more than two-thirds since 1970 – and there are no signs that this downward trend is slowing. The first phase of Cop15 talks in Kunming this week will lay the groundwork for governments to draw up a global agreement next year to halt the loss of nature. If they are to succeed, they will need to tackle what the IPBES (Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services) has identified as the five key drivers of biodiversity loss: changes in land and sea use; direct exploitation of natural resources; climate change; pollution; and invasion of alien species.

Changes in land and sea use

Habitat destruction

Clearing the US prairies: ‘On a par with tropical deforestation’

“It’s hidden destruction. We’re still losing grasslands in the US at a rate of half a million acres a year or more.”

Tyler Lark, from the University of Wisconsin-Madison, knows what he is talking about. Lark and a team of researchers used satellite data to map the expansion and abandonment of land across the US and discovered that 4m hectares (10m acres) had been destroyed between 2008 and 2016.

Large swathes of the United States’ great prairies continue to be converted into cropland, according to the research, to make way for soya bean, corn and wheat farming.

Changes in land and sea use has been identified as the main driver of “unprecedented” biodiversity and ecosystem change over the past 50 years. ​​ Three-quarters of the land-based environment and about 66% of the marine environment have been significantly altered by human actions.

North America’s grasslands – often referred to as prairies – are a case in point. In the US, about half have been converted since European settlement , and the most fertile land is already being used for agriculture. Areas converted more recently are sub-prime agricultural land, with 70% of yields lower than the national average, which means a lot of biodiversity is being lost for diminishing returns.

“Our findings demonstrate a pervasive pattern of encroachment into areas that are increasingly marginal for production but highly significant for wildlife,” Lark and his team wrote in the paper , published in Nature Communications.

Boggier areas of land, or those with uneven terrain, were traditionally left as grassland, but in the past few decades, this marginal land has also been converted. In the US, 88% of cropland expansion takes place on grassland, and much of this is happening in the Great Plains – known as America’s breadbasket – which used to be the most extensive grassland in the world.

What are the five biggest threats to biodiversity?

According to the UN’s Convention on Biological Diversity there are  five main threats  to biodiversity. In descending order these are: changes in land and sea use; direct exploitation of natural resources; climate change; pollution and invasive species. 

1. For terrestrial and freshwater ecosystems, land-use change has had the largest relative negative impact on nature since 1970.  More than a third of the world’s land surface and nearly 75% of freshwater resources are now devoted to crop or livestock production. Alongside a doubling of urban area since 1992, things such as wetlands, scrubland and woodlands – which wildlife relies on – are ironed out from the landscape. 

2. The direct exploitation of organisms and non-living materials, including logging, hunting and fishing and the extraction of soils and water are all  negatively affecting ecosystems .   In marine environments, overfishing is considered to be the most serious driver of biodiversity loss. One quarter of the world’s commercial fisheries are overexploited, according to a 2005  Millennium Ecosystem Assessment . 

3. The climate crisis is dismantling ecosystems at every level. Extreme weather events such as tropical storms and flooding are destroying habitats. Warmer temperatures are also changing the timing of natural events – such as the availability of insects and when birds hatch their eggs in spring. The distribution of species and their range is also changing. 

4. Many types of pollution are increasing. In marine environments, pollution from agricultural runoff (mainly nitrogen and phosphorus) do huge damage to ecosystems. Agricultural runoff causes toxic algal blooms and even  "dead zones"  in the worst affected areas. Marine plastic pollution has increased tenfold since 1980, affecting at least 267 species.

5. Since the 17th century, invasive species have  contributed to 40%  of all known animal extinctions. Nearly one fifth of the Earth’s surface is at risk of plant and animal invasions. Invasive species change the composition of ecosystems by outcompeting native species. 

Hotspots for this expansion have included wildlife-rich grasslands in the “prairie pothole” region which stretches between Iowa, Dakota, Montana and southern Canada and is home to more than 50% of North American migratory waterfowl, as well as 96 species of songbird. This cropland expansion has wiped out about 138,000 nesting habitats for waterfowl, researchers estimate.

These grasslands are also a rich habitat for the monarch butterfly – a flagship species for pollinator conservation and a key indicator of overall insect biodiversity. More than 200m milkweed plants, the caterpillar’s only food source, were probably destroyed by cropland expansion, making it one of the leading causes for the monarch’s national decline .

The extent of conversion of grassland in the US makes it a larger emission source than the destruction of the Brazilian Cerrado , according to research from 2019 . About 90% of emissions from grassland conversion comes from carbon lost in the soil, which is released when the grassland is ploughed up.

“The rate of clearing that we’re seeing on these grasslands is on par with things like tropical deforestation, but it often receives far less attention,” says Lark.

Food crop production globally has increased by about 300% since 1970 , despite the negative environmental impacts.

Reducing food waste and eating less meat would help cut the amount of land needed for farming, while researchers say improved management of existing croplands and utilising what is already farmed as best as possible would reduce further expansion.

Lark concludes: “I think there’s a huge opportunity to re-envision our landscapes so that they’re not only providing incredible food production but also mitigating climate change and helping reduce the impacts of the biodiversity crisis by increasing habitats on agricultural land.” PW

Direct exploitation of natural resources

Resource extraction

Groundwater extraction: ‘People don’t see it’

From hunting, fishing and logging to the extraction of oil, gas, coal and water, humanity’s insatiable appetite for the planet’s resources has devastated large parts of the natural world.

While the impacts of many of these actions can often be seen, unsustainable groundwater extraction could be driving a hidden crisis below our feet, experts have warned, wiping out freshwater biodiversity, threatening global food security and causing rivers to run dry.

Farmers and mining companies are pumping vast underground water stores at an unsustainable rate, according to ecologists and hydrologists. About half the world’s population relies on groundwater for drinking water and it helps sustain 40% of irrigation systems for crops .

The consequences for freshwater ecosystems – among the most degraded on the planet – are under-researched as studies have focused on the depletion of groundwater for agriculture.

But a growing body of research indicates that pumping the world’s most extracted resource – water – is causing significant damage to the planet’s ecosystems. A 2017 study of the Ogallala aquifer – an enormous water source underneath eight states in the US Great Plains – found that more than half a century of pumping has caused streams to run dry and a collapse in large fish populations. In 2019, another study estimated that by 2050 between 42% and 79% of watersheds that pump groundwater globally could pass ecological tipping points, without better management.

“The difficulty with groundwater is that people don’t see it and they don’t understand the fragility of it,” says James Dalton, director of the global water programme at the International Union for Conservation of Nature (IUCN). “Groundwater can be the largest – and sometimes the sole – source in certain types of terrestrial habitats.

“Uganda is luxuriantly green, even during the dry season, but that’s because a lot of it is irrigated with shallow groundwater for agriculture and the ecosystems are reliant on tapping into it.”

According to UPGro (Unlocking the Potential of Groundwater for the Poor), a research programme looking into the management of groundwater in sub-Saharan Africa, 73 of the 98 operational water supply systems in Uganda are dependent on water from below ground. The country shares two transboundary aquifers: the Nile and Lake Victoria basins. At least 592 aquifers are shared across borders around the world.

“Some of the groundwater reserves are huge, so there is time to fix this,” says Dalton. “It’s just there’s no attention to it.”

Inge de Graaf, a hydrologist at Wageningen University, who led the 2019 study into watershed levels, found between 15% to 21% had already passed ecological tipping points, adding that once the effects had become clear for rivers, it was often too late.

“Groundwater is slow because it has to flow through rocks. If you extract water today, it will impact the stream flow maybe in the next five years, in the next 10 years, or in the next decades,” she says. “I think the results of this research and related studies are pretty scary.”

In April, the largest ever assessment of global groundwater wells by researchers from University of California, Santa Barbara, found that up to one in five were at risk of running dry. Scott Jasechko, a hydrologist and lead author on the paper, says that the study focuses on the consequences for humans and more research is needed on biodiversity.

“Millions of wells around the world could run dry with even modest declines in groundwater levels. And that, of course, has cascading implications for livelihoods and access to reliable and convenient water for individuals and ecosystems,” he says. PG

The climate crisis

climate crisis flames

Climate and biodiversity: ‘Solve both or solve neither’

In 2019, the European heatwave brought 43C heat to Montpellier in France. Great tit chicks in 30 nest boxes starved to death, probably because it was too hot for their parents to catch the food they needed, according to one researcher . Two years later, and 2021’s heatwave appears to have set a European record, pushing temperatures to 48.8C in Sicily in August. Meanwhile, wildfires and heatwaves are stripping the planet of life.

Until now, the destruction of habitats and extraction of resources has had a more significant impact on biodiversity than the climate crisis. This is likely to change over the coming decades as the climate crisis dismantles ecosystems in unpredictable and dramatic ways, according to a review paper published by the Royal Society.

“There are many aspects of ecosystem science where we will not know enough in sufficient time,” the paper says. “Ecosystems are changing so rapidly in response to global change drivers that our research and modelling frameworks are overtaken by empirical, system-altering changes.”

The calls for biodiversity and the climate crisis to be tackled in tandem are growing. “It is clear that we cannot solve [the global biodiversity and climate crises] in isolation – we either solve both or we solve neither,” says Sveinung Rotevatn, Norway’s climate and environment minister, with the launch in June of a report produced by the world’s leading biodiversity and climate experts. Zoological Society of London senior research fellow Dr Nathalie Pettorelli, who led a s tudy on the subject published in the Journal of Applied Ecology in September, says: “The level of interconnectedness between the climate change and biodiversity crises is high and should not be underestimated. This is not just about climate change impacting biodiversity; it is also about the loss of biodiversity deepening the climate crisis.”

Writer Zadie Smith describes every country’s changes as a “local sadness” . Insects no longer fly into the house when the lights are on in the evening, the snowdrops are coming out earlier and some migratory species, such as swallows, are starting to try to stay in the UK for winter. All these individual elements are entwined in a much bigger story of decline.

Our biosphere – the thin film of life on the surface of our planet – is being destabilised by temperature change. On land, rains are altering, extreme weather events are more common, and ecosystems more flammable. Associated changes, including flooding , sea level rise, droughts and storms, are having hugely damaging impacts on biodiversity and its ability to support us.

In the ocean, heatwaves and acidification are stressing organisms and ecosystems already under pressure due to other human activities, such as overfishing and habitat fragmentation.

The latest Intergovernmental Panel on Climate Change (IPCC) landmark report showed that extreme heatwaves that would usually happen every 50 years are already happening every decade. If warming is kept to 1.5C these will happen approximately every five years.

The distributions of almost half (47%) of land-based flightless mammals and almost a quarter of threatened birds, may already have been negatively affected by the climate crisis, the IPBES warns . Five per cent of species are at risk of extinction from 2C warming, climbing to 16% with a 4.3C rise.

Connected, diverse and extensive ecosystems can help stabilise the climate and will have a better chance of thriving in a world permanently altered by rising emissions, say experts. And, as the Royal Society paper says: “Rather than being framed as a victim of climate change, biodiversity can be seen as a key ally in dealing with climate change.” PW

Pollution

The hidden threat of nitrogen: ‘Slowly eating away at biodiversity’

On the west coast of Scotland, fragments of an ancient rainforest that once stretched along the Atlantic coast of Britain cling on. Its rare mosses, lichens and fungi are perfectly suited to the mild temperatures and steady supply of rainfall, covering the crags, gorges and bark of native woodland. But nitrogen pollution, an invisible menace, threatens the survival of the remaining 30,000 hectares (74,000 acres) of Scottish rainforest, along with invasive rhododendron, conifer plantations and deer.

While marine plastic pollution in particular has increased tenfold since 1980 – affecting 44% of seabirds – air, water and soil pollution are all on the rise in some areas. This has led to pollution being singled out as the fourth biggest driver of biodiversity loss.

In Scotland, nitrogen compounds from intensive farming and fossil fuel combustion are dumped on the Scottish rainforest from the sky, killing off the lichen and bryophytes that absorb water from the air and are highly sensitive to atmospheric conditions.

“The temperate rainforest is far from the sources of pollution, yet because it’s so rainy, we’re getting a kind of acid rain effect,” says Jenny Hawley, policy manager at Plantlife, which has called nitrogen pollution in the air “the elephant in the room” of nature conservation. “The nitrogen-rich rain that’s coming down and depositing nitrogen into those habitats is making it impossible for the lichen, fungi, mosses and wildflowers to survive.”

Environmental destruction caused by nitrogen pollution is not limited to the Scottish rainforest. Algal blooms around the world are often caused by runoff from farming, resulting in vast dead zones in oceans and lakes that kill scores of fish and devastate ecosystems. Nitrogen-rich rainwater degrades the ability of peatlands to sequester carbon, the protection of which is a stated climate goal of several governments. Wildflowers adapted to low-nitrogen soils are squeezed out by aggressive nettles and cow parsley, making them less diverse.

About 80% of nitrogen used by humans – through food production, transport, energy and industrial and wastewater processes – is wasted and enters the environment as pollution.

“Nitrogen pollution might not result in huge floods and apocalyptic droughts but we are slowly eating away at biodiversity as we put more and more nitrogen in ecosystems,” says Carly Stevens, a plant ecologist at Lancaster University. “Across the UK, we have shown that habitats that have lots of nitrogen have fewer species in them. We have shown it across Europe. We have shown it across the US. Now we’re showing it in China. We’re creating more and more damage all the time.”

To decrease the amount of nitrogen pollution causing biodiversity loss, governments will commit to halving nutrient runoff by 2030 as part of an agreement for nature currently being negotiated in Kunming. Halting the waste of vast amounts of nitrogen fertiliser in agriculture is a key part of meeting the target, says Kevin Hicks, a senior research fellow at the Stockholm Environment Institute centre at York.

“One of the biggest problems is the flow of nitrogen from farming into watercourses,” Hicks says. “In terms of a nitrogen footprint, the most intensive thing that you can eat is meat. The more meat you eat, the more nitrogen you’re putting into the environment.”

Mark Sutton, a professor at the UK Centre for Ecology & Hydrology, says reducing nitrogen pollution also makes economic sense.

“Nitrogen in the atmosphere is 78% of every breath we take. It does nothing, it’s very stable and makes the sky blue. Then there are all these other nitrogen compounds: ammonia, nitrates, nitrous oxide. They create air and water pollution,” he says. He argues that if you price every kilo of nitrogen at $1 (an estimated fertiliser price), and multiply it by the amount of nitrogen pollution lost in the world – 200bn tonnes – it amounts to $200bn (£147bn) every year.

“The goal to cut nitrogen waste in half would save you $100bn,” he says. “I think $100bn a year is a worthwhile saving.” PG

  • Invasive species

Invasive Species

The problem for islands: ‘We have to be very careful’

On Gough Island in the southern Atlantic Ocean, scores of seabird chicks are eaten by mice every year. The rodents were accidentally introduced by sailors in the 19th century and their population has surged, putting the Tristan albatross – one of the largest of its species – at risk of extinction along with dozens of rare seabirds. Although Tristan albatross chicks are 300 times the size of mice, two-thirds did not fledge in 2020 largely because of the injuries they sustained from the rodents, according to the RSPB .

The situation on the remote island, 2,600km from South Africa, is a grisly warning of the consequences of the human-driven impacts of invasive species on biodiversity. An RSPB-led operation to eradicate mice from the British overseas territory has been completed, using poison to help save the critically endangered albatross and other bird species from injuries they sustain from the rodents. It will be two years before researchers can confirm whether or not the plan has worked. But some conservationists want to explore another controversial option whose application is most advanced in the eradication of malaria : gene drives.

Instead of large-scale trapping or poisoning operations, which have limited effectiveness and can harm other species, gene drives involve introducing genetic code into an invasive population that would make them infertile or all one gender over successive generations. The method has so far been used only in a laboratory setting but at September’s IUCN congress in Marseille, members backed a motion to develop a policy on researching its application and other uses of synthetic biology for conservation.

“If a gene drive were proven to be effective and there were safety mechanisms to limit its deployment, you would introduce multiple individuals on an island whose genes would be inherited by other individuals in the population,” says David Will, an innovation programme manager with Island Conservation , a non-profit dedicated to preventing extinctions by removing invasive species from islands. “Eventually, you would have either an entirely all male or entirely all female population and they would no longer be able to reproduce.”

Nearly one-fifth of the Earth’s surface is at risk of plant and animal invasions and although the problem is worldwide, such as feral pigs wreaking havoc in the southern United States and lionfish in the Mediterranean , islands are often worst affected. The global scale of the issue will be revealed in a UN scientific assessment in 2023.

“We have to be very careful,” says Austin Burt, a professor of evolutionary genetics at Imperial College London, who researches how gene drives can be used to eradicate malaria in mosquito populations. “If you’re going after mice, for example, and you’re targeting mice on an island, you’d need to make sure that none of those modified mice got off the island to cause harm to the mainland population.”

In July, scientists announced they had successfully wiped out a population of malaria-transmitting mosquitoes using a gene drive in a laboratory setting, raising the prospect of self-destructing mosquitoes being released into the wild in the next decade.

Kent Redford, chair of the IUCN Task Force on Synthetic Biology who led an assessment of the use of synthetic biology in conservation, said there are clear risks and opportunities in the field but further research is necessary.

“None of these genetic tools are ever going to be a panacea. Ever. Nor do I think they will ever replace the existing tools,” Redford says, adding: “There is a hope – and I stress hope – that engineered gene drives have the potential to effectively decrease the population sizes of alien invasive species with very limited knock-on effects on other species.” PG

Find more age of extinction coverage here , and follow biodiversity reporters Phoebe Weston and Patrick Greenfield on Twitter for all the latest news and features

  • Biodiversity
  • The road to Cop15
  • Endangered species
  • Endangered habitats
  • Climate crisis
  • Conservation

Most viewed

U.S. flag

An official website of the United States government

Here’s how you know

Official websites use .gov A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS A lock ( Lock A locked padlock ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

JavaScript appears to be disabled on this computer. Please click here to see any active alerts .

What You Can Do About Pollution Prevention

P2 resources for concerned citizens, technical assistance where you live.

Find EPA regional contact information, and state and local P2 technical assistance resources.

Pollution prevention is not just the responsibility of businesses and government agencies. Citizens can help solve environmental problems by reducing pollution at the source, before it is created. 

We can all apply pollution prevention in our daily lives. Whether in the home and garden, at the supermarket or on the road, we can make pollution prevention choices every day in order to protect the environment, save money and conserve natural resources. 

The resources below can help you be more aware of the many ways to prevent pollution:

Home: Use reusable shopping bags; Install a programmable thermostat. State or Tribal Program or University: Apply for EPA Pollution Prevention grant. Industry: Switch to low-carbon energy supply and materials; Reduce or eliminate use of hazardous chemicals. School or Business: Reduce or eliminate use of single use cups, plates and utensils in cafeteria; Look for products with Safer Choice label; Establish sustainable purchasing program. Commute: Carpool, walk, bike, or take transit; Keep car tires inflated.

  • Easy steps you can take for water conservation .
  • Play your part in conserving water resources .
  • How to save energy in your home .
  • Learn about Greener Living : our actions impact the environment. Each thing we do can help or hurt our planet in many ways. EPA has tools to help you learn and understand the issues and reduce your environmental footprint.
  • Learn more about P2 at home and at work from the P2 Week web site.

Classroom and Workplace

  • Internship Programs in P2 – Learn on the job and help businesses learn how to apply pollution prevention approaches and practices .
  • A full list of Regional Contacts is available on the Contact Us page .
  • Pollution Prevention Home
  • Learn About P2
  • What You Can Do
  • P2 Hub Resources Center
  • Measuring P2
  • Pollution Prevention Law

Ecavo

10 Environmental Problems and Solutions in 2023

September 6, 2022

Graham Sawrey

There are so many environmental problems we face today, and they all have to be addressed. But which environmental issues demand our attention now?

We’ll discuss 10 environmental problems and solutions that we can work on now to change our collective future for the better!

10 Environmental Problems and Solutions

Want to know even more? Check out our List of Environmental Issues Examples where we discuss the 30 biggest threats earth faces today for a more in-depth understanding of environmental problems.

Here are the top 10 environmental issues that require immediate attention for the health of our planet and our own survival.

  • Climate Change
  • Water Pollution
  • Air Pollution
  • Natural Resource Depletion
  • Waste Management
  • Urban Sprawl
  • Energy Consumption
  • Environmental Degradation
  • Deforestation
  • Recycling Inefficiencies

We’ll discuss these top 10 environmental problems in detail and offer some real-world solutions to each one.

There is no magic bullet solution for the environmental issues we face. The real solution will come when individuals choose to make decisions in favor of the earth’s welfare .

When billions of us combine a lot of small actions they add up to a big impact on the earth.

1. Climate Change

A sign from a protestor saying there is no Planet B trying to fight Climate change

Climate change is a massive topic. Inside this topic are all the subtopics and environmental problems that add up to climate change.

Climate change is the term we use to refer to the changing atmospheric conditions that affect life on earth.

  • Global warming
  • The greenhouse effect
  • Increased saturation of atmospheric carbon dioxide
  • Polar ice melt
  • Rising seawater levels
  • Ozone layer depletion

These things are intertwined and many of them have the same root cause – the main one is the burning of fossil fuels.

However, along with increased carbon dioxide output from fossil fuels, there are mainly CFCs and halons though other substances also destroy ozone molecules.

These substances are found in aerosols, refrigerants (like air conditioners) and other machinery. CFCs are banned, but other ozone-destroying chemicals are still in use.

Depletion of the ozone layer allows more UVB rays to get through the atmosphere which has a warming effect in the atmosphere of the globe. This changes weather patterns and climate expectations everywhere.

Climate Change Solutions

The solutions to climate change involve viewing the world differently than we currently do as a global culture.

We view the world as something to use. We want to get as much as we can while it’s available. This is causing us to use things we don’t need, create waste, and deplete our resources too fast.

Here are a few things we can do to help combat climate change.

  • Drive less often and less far. If there is an option to walk, ride a bike, carpool, or use public transportation then use those options first to help decrease your carbon footprint.
  • Reuse things instead of throwing them away. Americans seem to view recyclables as the way forward but they have limitations. They help us to reuse existing resources, but an even better choice is to choose reusable items every chance we get.
  • Aim for zero waste. Think about it before you buy. Choose to invest your money in things that will last a long time and can be reused or upcycled instead of thrown away. The world is awash in used cheap clothing, single-use plastics, and cheap appliances that are recyclable yet sit in filthy heaps.
  • Get involved. Too many people like to talk about climate change and even yell about climate change but don’t do anything to solve it. Work to increase recycling facilities in your area, educate your community about reusables, and plant native species in your town.
  • Get Renewable Energy. Renewable energy is a must. Buying an EV car isn’t enough because plugging into a fossil fuel electric grid just perpetuates the problem. Investigate your own chain of energy and opt for the cleanest energy you can afford.

Climate change is a real environmental issue and it’s full of uncertainties. One thing we know is that the decisions we make today can have a major impact on the quality of life on planet earth in the future.

2. Water Pollution

A stream with garbage in it showing Water pollution

Water pollution includes marine pollution and freshwater pollution. Let’s take a look at both.

Marine pollution is largely caused by nitrogen that washes away from inland soils and drains into the ocean water.

The excess nitrogen creates algae blooms that prevent sunlight and oxygen from penetrating into the ocean water.

This creates a hypoxic environment called a “dead zone” where fish, crustaceans, and sea mammals can’t live. Mobile marine animals leave the area. Immobile marine life dies.

This is the primary cause of our loss of coral reefs around the globe.

Marine pollution also takes the form of trash and recyclables that wash into the ocean and form massive flotillas of rubbish .

Freshwater pollution refers to the pollution of inland water like rivers, lakes, and reservoirs. We rely on these bodies of water for our drinking water, but they are quickly becoming too polluted to drink.

Freshwater pollution also happens due to nitrogen in the water , but it can also be the result of things people do.

  • Trash that ends up in the water
  • Sewer treatment plant releases (treated and untreated)
  • Dirty stormwater runoff
  • Pharmaceuticals, detergents, and other things people put in the water system
  • Heavy metals like lead and mercury

Some of these things we can’t avoid, but a lot of it is preventable.

Water Pollution Solutions

The effects of pollution could be minimized and possibly healed if we began to consciously make decisions that will protect our watershed instead of polluting it.

  • Farmers can use cover crops to fix nitrogen in the soil . It’s an investment, not an overnight fix, but it will make the biggest impact on the health of the oceans and will eventually eliminate dead zones.
  • Homeowners can use as little culinary water as possible for watering outdoor plants. Try xeriscaping to save water. Install rain barrels to collect free water to use on outdoor plants and trees.
  • Dispose of medicines, motor oil, household chemicals, and paint in the proper facilities so they stay out of the watershed.
  • Eat organic as much as you can. This isn’t fail-proof, but most organic farms rely on natural sources of nitrogen rather than synthetic nitrogen to increase crop yields.
  • Be happy with imperfect produce. There is a massive global cost to get those perfect fruits and vegetables. They’re treated with pesticides, herbicides, and chemical fertilizers to make them lovely. Go natural to encourage farmers who want to save the planet.
  • Enjoy water sports without a motor. You can greatly reduce your own impact on inland water supplies by enjoying muscle-powered water sports that don’t introduce oils, gasoline, and exhaust particulates into the water supply.

Think about how you’re using our precious water resources. Clean water is so easy to get in developed countries that we tend to forget the watershed it comes from.

That watershed needs our protection to continue to provide us with the clean water we need to survive.

3. Air Pollution

Industrial area with smoke and air pollution

Air pollution is what we call the suspended particulates that become part of the atmospheric gases that we breathe.

We’re not running out of oxygen. The earth has plenty of oxygen. The problem is that the concentration of carbon dioxide is increasing disproportionately and it’s pretty much all our fault.

There is a natural carbon dioxide cycle that we have with all of the plants on the planet. We naturally produce carbon dioxide, and they breathe it in and convert it to oxygen.

In a natural state, this would be in perfect balance.

However, when we burn fossil fuels we pump massive amounts of carbon dioxide into the atmosphere that can’t be offset by the plants in the world.

Furthermore, the carbon dioxide is mixed with a slurry of carcinogens and toxins like methane, formaldehyde, phosphorus, styrene, and more.

Curious to see the full list? The EPA has a list of 188 air pollutants . Nobody benefits from breathing in these compounds.

Air pollution affects everything – us, plants, animals, all water on the planet, and marine fish and mammals.

Air pollution causes and effects have to be clearly understood to really grasp the solutions that we have to implement to clear the air.

Air Pollution Solutions

The biggest solution we can implement is the switch to clean alternative energy sources because fossil fuels are the biggest polluters on the planet.

However, we have to be clear that there isn’t a totally clean energy solution .

  • Solar panels are made with coal and require toxic waste disposal when they’re decommissioned.
  • Wind turbines have some recyclable parts but the huge fiberglass parts end up in landfills. One of the pros of wind energy is that wind turbines produce zero-cost electricity for about 10 years.
  • Nuclear energy pros and cons are hotly debated. It’s a dependable and safe energy source that produces zero carbon emissions . However, uranium mining and disposal cause major environmental hazards.
  • One of the advantages of biomass electricity that it creates fewer carbons than fossil fuels. However, biomass production is resulting in deforestation .

Having said all that, we still have to choose these alternative energy sources over straight-up fossil fuel consumption.

Fossil fuels are the dirtiest sources of energy that we have and they contribute the most to the dirty air that we suffer from around the world.

  • Limit your time on the road. Vehicle emissions are responsible for most of the dirty air that’s found in cities and communities around the world.
  • Turn off the lights and turn down the heat. Electricity usage is directly tied to fossil fuel consumption for powering the electrical grid in many areas.
  • Help plant trees. You can plant native tree species in your own town to help clean the air.
  • Contribute to rainforest reforestation projects that aim to help strengthen the world’s clean air and biodiversity.
  • Choose reusable items and avoid using plastics as much as possible. Manufacturing single-use items contribute a lot to air pollution.

Reducing dependence on fossil fuels will go the farthest in clearing the air around the world.

4. Natural Resource Depletion

A closed dam showing how we can use natural resources effectively.

The world is full of natural resources. A natural resource is anything that we can use to live or make something from.

Some natural resources examples include:

  • Fossil fuels

The world is full of natural resources that we use to enable life as we know it. Natural resources feed us, give us electricity, wire our laptops, and keep us hydrated.

The problem is not all natural resources are renewable . Coal, natural gas, uranium, gold, and even salt are natural resources we depend on but once they’re used up we have no more.

This is why we have to focus on stewarding our renewable natural resources.

  • Keeping our water clean
  • Collecting sunlight for energy
  • Ensuring that fisheries are not over-harvested
  • Keeping soil as clean as possible – avoiding the use of pesticides, herbicides, and chemical fertilizers
  • Managing timber stands wisely so that we aren’t using more trees than we can replenish in several decades.

When we overuse our natural resources we get a short-term payoff but a long-term loss.

For example, establishing reservoirs in the southwest was a good idea 90 years ago. It allowed the development of desert areas.

However, as communities expand across arid areas under the assumption that established water sources will be reliable, the water sources are being used faster than they can naturally replenish.

Natural Resource Depletion Solutions

One of the main natural resources that we’re depleting is fossil fuel. It is not only going away, but it’s also ruining our planet as we use it for fuel and energy.

Switching to cleaner energy sources is a non-negotiable for solving our climate crisis, but we also have to focus on decreasing our need for energy .

Here are some good ways to decrease your own energy demand so we use fewer natural resources to produce electricity.

  • Use less air conditioning in the summer. Willingness to be a little warm will go a long way toward decreasing your contribution to air pollution.
  • Use less heat in the winter. Wear a sweater and some slippers instead of cranking up the heat.
  • Get up and go to bed with the sun. This is harder in the winter, but by adjusting your waking and sleeping schedule to be more in tune with the sun you’ll feel better and use less electricity in the morning and at night.
  • Help to plant trees. Again, replenishing the world’s forests help ensure that our air is healthy and that we have timber stands ready to harvest in the future.
  • Waste less food. This doesn’t mean cleaning your plate. This means putting less on it in the first place. Food waste begins at the store and it can end there too.
  • Eat whole foods. Whole, natural foods don’t require processing. This means that there isn’t a ton of electricity and fossil fuels going into the production of what you eat. Whole foods are better for the environment and better for your body.
  • Refill your water bottle. The majority of single-use plastics that are wandering around in the environment are plastic water bottles. Get a sturdy reusable bottle and refill it. You can keep thousands of water bottles out of the waste stream in your lifetime.

By focusing on sustainability we can help to reduce our dependence on non-renewable resources and help to conserve the resources that we have so they last longer.

5. Waste Management

A woman sorting her recyclables and garbage so she can help avoid causing environmental problems

Waste management has come a long way in the last decade, but it has a long way to go in certain areas of the United States.

According to the EPA, the total waste production in the United States averages out to 4.9 pounds per person per day . This includes all sorts of trash that is binned and collected.

  • Recyclables (plastic, paper, glass)
  • Landfill items that can’t be recycled
  • Grass clippings
  • Electronics
  • Appliances, etc.

50% of the waste stream goes into landfills .

About 32% of the waste collected in the United States gets recycled or composted .

Nearly 12% gets burned as “biomass” to generate electricity.

Around 6% of the waste is food waste that gets treated in other ways. It might be used in animal feed, turned into fertilizer, used in the creation of biochemicals, or other methods of disposal or reuse.

It’s clear that the US has made a concerted effort to deal with waste streams. The problem is that the amount of waste generated per person is growing drastically.

In 1980 each person generated about 3.66 pounds per day. In 2018 that figure had risen to 4.9 pounds per day. This is the trend that we must change.

Worldwide waste production equals about 1.63 pounds per person with the bulk of that waste being generated in highly developed countries.

Though developing countries don’t tend to generate nearly as much waste per person, they don’t have any safe waste disposal infrastructure which leads to the creation of massive open dumps .

All landfills emit tons of greenhouse gases – mostly methane and carbon dioxide. This is another major contributor to global warming.

While recycling efforts in the United States and elsewhere have produced great results, the recycling waste stream produces much more material than can be currently recycled – ending in waste.

Waste Management Solutions

Waste management must be solved worldwide, but the only thing we can affect is our own consumption and waste patterns.

If each of us becomes wiser consumers we can have a dramatic impact on the waste streams and the carbon emissions from them.

  • Waste stops at the store. We can’t impact how much production waste there is unless we stop supporting it with our money. Less demand equals less production.
  • Choose reusables. The best purchases are things that can be used hundreds of times before they’re broken or used up.
  • Choose recyclables. The recycling stream is quickly outpacing available recycling facilities, so this still isn’t the best choice, though it’s better than throwing things in the landfill.
  • Don’t buy more food than you can eat. Some areas have food composting programs, but when food is thrown away it also releases greenhouse gases. Don’t fill your garbage can with food. Reduce your waste and compost food waste if you can. That will also help increase soil health.
  • Lobby for recycling. There are billions of dollars being spent on United States “infrastructure.” Citizens need to raise awareness of the need for more and bigger recycling centers so the United States can process its own rubbish.
  • Lobby for action. Certain landfills are known as “super emitters.” If local authorities and national politicians will focus on cleaning up the emissions from these sites it will make a huge difference.

In the case of waste streams, part of the responsibility lies with municipal governments to handle waste more cleanly.

The other part of the responsibility lies with the citizens. We are the ones generating the waste. We can all do our part to cut down on our own waste as much as possible.

6. Urban Sprawl

Los Angeles is a prime example of environmental problems caused by urban sprawl

Urban sprawl is the term used to describe the way that cities spread from an urban center into widening suburban neighborhoods. Dwellings go from high-density to low-density, taking up more land.

Urban sprawl is characterized by land use and natural resource consumption .

Undeveloped land that was farmland, ranchland, native plants and soil, or forest is paved over for low-density housing and new strip malls, grocery stores, and restaurant chains.

Here are key takeaways you should know about Urban Sprawl.

  • These sprawling areas greatly tax the water supply in the area because the new parks, city strips, lawns, and gardens have to be watered continuously to keep their nice appearance.
  • Urban sprawl is a major contributor to the carbon emissions from vehicles . People must commute from sprawling areas into the downtown area for work and school. This increases time on the road. In the worst cases, these vehicles idle while they’re stuck in traffic.
  • Urban sprawl creates a need for additional garbage processing resources, greenspace planning, freshwater wells, water treatment plants, waste treatment plants, power plants, substations, and more.

Many of these things aren’t bad, and urban sprawl is often the natural outflow of living in a prosperous area .

It can also be a sign that the municipal government is not keeping the urban areas clean and safe.

Regardless, it is a style of living that uses many more resources than a high-density urban lifestyle.

Some cities including the Dallas/Ft. Worth area and Los Angeles are experiencing increasing urban density as more residents refurbish downtown areas to make them desirable neighborhoods.

Urban Sprawl Solutions

There aren’t any surefire solutions to urban sprawl. The fact is that people move away from urban areas for many reasons – not all of which can be solved.

Here are a few things that local governments can do to encourage people to adopt a high-density housing lifestyle in urban areas.

  • Keep residents safe. When people and businesses don’t feel safe in an area they move. Most of the time they choose to move into a suburban or rural area that feels safer. When cities put the safety of residents first they enjoy the prosperity that a thriving urban core brings.
  • Focus on key infrastructure. Garbage services, stormwater runoff, sewage treatment, and traffic controls make a big difference in the quality of life in urban areas. When the urban areas feel dirty and congested people move out of the city.
  • Encourage community spirit. Cities that find ways to involve citizens in city life enjoy a much higher sense of community pride. This benefits everyone because people who take pride in their community work harder to keep it clean and safe.
  • Keep taxes fair. Many people choose to live outside of municipal boundaries because property taxes are much lower in unincorporated areas. Cities that cut fiscal waste can also keep property taxes lower while providing excellent city services.

Over time cities can turn urban life into a desirable living situation for many, diminishing the exodus to outlying areas and helping to curb the rapidity of urban sprawl.

7. Energy Consumption

High voltage transmission lines bring electricity to homes and businesses.

Our overall high energy consumption is the main contributor to climate change because 61% of the electricity generated in the United States is from burning fossil fuels.

So, on top of burning fossil fuels to commute from sprawling communities, we are also burning fossil fuels to charge our EV cars , keep the air conditioners running, and keep the lights on.

There is no denying the negative impact that our high energy consumption has on the planet, but we also rely on it for our highly technological way of life.

For example, let’s take a look at data centers . The world relies on data centers.

They serve all of your cloud storage, social media content, online shopping, virtual worlds, game streaming, on-demand entertainment, and remote workflows.

Right now, data centers alone consume about 2% of all the energy generated in the United States, and that number is growing as data centers pop up everywhere to handle cloud storage needs.

We can’t just stop feeding data centers because we rely on them for work, data storage, and socialization. Younger generations are more dependent on data center capacity and speed than ever before .

That’s just one example of an energy consumer that we can’t just shut down to save the planet. So we have to look at home to decrease energy consumption .

Energy Consumption Solutions

As with most solutions to our global environmental crisis, the answer begins at home.

  • Shut off the lights and opt for sunshine. Even small amounts of wattage saved add up to big savings for the planet.
  • Keep appliances clean. Did you know that vacuuming your refrigerator condenser will help it to run less often and cool more efficiently? Keep the dryer clean too so it can dry clothing faster and use less energy.
  • Accept a little discomfort. Instead of running the heat and air conditioning to keep yourself at the ideal temperature, let it fluctuate up and down to save energy.
  • Reduce energy use during peak hours. 7am to 10pm are peak energy hours for most of the country during most of the year. It’s hard to cut down on energy usage during waking hours, but if you can you’ll save a lot of energy and cut down on your bill too.
  • Invest in solar panels. Even a couple of solar panels can really help offset your energy usage. Many utility companies around the United States are taking advantage of government incentives and may be able to install your solar system for free!
  • Buy into renewable energy. Many energy companies offer programs where subscribers can buy into renewable energy projects. The electricity from renewables costs a bit more, but by buying in you allow your energy provider to buy into renewable and burn fewer fossil fuels.

There are dozens of ways we can all think of to save a little energy here and there. From riding a bike to eating fresh foods we can help decrease the amount of energy it takes to power our lives.

8. Environmental Degradation

Garbage floating in a waterway in India - a land suffering from the effects of air, soil, and water pollution.

Environmental degradation occurs when human activities change the environment for the worse.

Environmental Degradation Definition

Environmental degradation is the destruction or deterioration of the quality of natural resources and habitats including soil, water, air, and wildlife .

Degradation primarily happens through pollution, over-harvesting, and erosion.

Here are some examples of environmental degradation .

  • Strip mining
  • Urban sprawl
  • Overfishing
  • Marine pollution
  • Air pollution

Environmental degradation is inevitable because we have to use the land for food production, energy production, and dwellings, but we can do a lot to help preserve the quality of the land.

Environmental Degradation Solutions

There are a number of thing we can do to help reduce the amount of environmental degradation that happens as a result of our own needs and wants.

  • Replant native trees and plants . Much environmental degradation occurs because native plants are stripped away for development. Replanting exposed soil helps to replenish minerals, nitrogen, habitats, and stop erosion.
  • Curb energy consumption. Again we come back to energy use. The majority of the air pollution in the United States is caused by energy consumption and transportation.
  • Plan travel wisely. Instead of making lots of small trips, try to consolidate trips in the car to cut down on air pollution.
  • Invest in alternative energy. Alternative energy sources also cause soil degradation because of the raw materials that have to be mined to make them and soil disruption from placement. However, it is much less pollutive to the air than fossil fuels.
  • Eat whole foods. Responsible farming and ranching helps to replenish soils through crop rotation and the use of nitrogen-fixing cover crops. However, America’s insatiable appetite for snack foods creates a high demand for irresponsibly grown crops. Eating whole foods is much better for the earth.
  • Invest in urban revitalization. If you’re a renter it can be hard to find an urban dwelling. However, if you’re an invester, consider revitalizing downtown industrial areas for housing instead of developing low-density suburban housing.

Humans aren’t responsible for all types of environmental degradation, but we contribute a lot to it. We can also help clean up our habits and use fewer resources that result in habitat destruction.

9. Deforestation

A biomass power plant that burns chipped trees to generate electricity - causing deforestation.

Deforestation happens when trees are stripped away or burned away. It can be human-caused or the result of a natural disaster.

Sometimes humans and nature work together to create deforestation. Examples include when a hydroelectric dam bursts due to catastrophic rainfall, or a volcano like Mt. Saint Helens flattens a forest.

Human-caused deforestation is two-fold. Sometimes managed forests owned by timber companies are stripped and then replanted. This happens for lumber and to create biomass for power plants.

While habitat loss and environmental degradation are heartbreaking, the trees will regrow within a few decades. However, the animals and birds must shift from place to place to survive.

On the other hand, forest fires caused by human activity will deforest an area that may not ever recover. Habitat loss is sometimes permanent .

Deforestation Solutions

The most obvious solution to deforestation is to replant trees in areas that are logged or burned for any reason. Replanting with native species is a must.

The second solution to deforestation is to decrease the demand for paper products and lumber. Choose things that are reusable as much as possible.

The alternative to lumber is steel which creates a different problem because it requires mining and uses non-renewable resources .

However, steel can be recycled forever. One of the benefits of recycling steel is that the recycled steel is just as strong and pure as virgin steel.

So while the recycled steel industry can’t keep up with the need for new steel, as more steel is recycled for construction purposes we should see it gradually relieve some of the need for lumber.

10. Recycling Inefficiencies

Bales of recyclable paper waiting to be processed into new paper products.

The final huge environmental problem that we must solve domestically is our recycling inefficiencies.

Most Americans don’t realize that our recycling system is strained and largely broken because we don’t recycle our trash at home.

The story of US recycling is a long one that’s full of problems, even from the beginning. China used to handle the bulk of our recycling, but it is so polluted that they banned it in 2018.

Now America’s recycling waste is shipped to developing countries like Cambodia, Bangladesh, and Ethiopia where it is piled waiting to be sorted and recycled into usable materials.

The problem is that anywhere from 20 to 70% of our recyclables end up in a landfill overseas or are burned. This is an outrage that has sparked a lot of discussions but it needs to be addressed at home.

Here are the reasons our recycling is not being recycled.

  • People are putting contaminated items into recycling bins. Dirty recyclables can cause an entire load of recyclables – several tons – to be dumped in a landfill.
  • People include non-recyclables in recycling bins. This wishful recycling is a major cause for discarding entire loads of recyclables. It’s too expensive to go through and sort it all back out, so it all gets put in the dump.
  • The United States isn’t processing recyclables. The United States doesn’t have a federal recycling program and has been dependent on other countries to handle our waste. Now they don’t want it, so we’re stuck with it. We have to implement a recycling program and do it ourselves to succeed.
  • Recycling is expensive. Cities used to sell their recycling as a type of raw material and make money from it. Now that global market has dried up and cities are having to pay to get rid of recyclables. That means tons of it are going into the landfill instead of being recycled.
  • There are too many types of plastic. Plastic is a particular problem because there are so many types and not all are recyclable. Even though there is a number and a recycling symbol on the bottom doesn’t mean it’s accepted for recycling.

All of this is discouraging because those of us who recycle carefully realize that in spite of us our clean, sorted recyclables might still be ending in a landfill.

Recycling Solutions

The keys to our recycling disaster are expensive, and we have to play the long game to win.

  • Education. Educate the public about what’s happening to recyclables and why. When people understand why they can’t throw grocery bags or plastic wrap in with clean water bottles they’ll stop doing it.
  • Federal Investment. The federal government needs to invest in recycling centers that can turn US recyclable waste into clean, usable materials. It’s an expensive solution but the only one that can turn the situation around long-term.
  • Business Investment. One of the major recycling benefits is that businesses can create packaging and goods with recycled materials. This will help to create a circular market for recyclables in the US economy.
  • Reduction. The US must turn away from consumerism and focus on sustainability. As long as we buy into the consumerist culture of getting as much as possible, the waste problem will continue to grow.

We can help at home by ensuring that our recyclables are clean and generating less of a need for recycling by decreasing our dependence on single-use items.

It would also be helpful to limit plastic production to only types that are safe to use and can be recycled.

The benefits of recycling clothes and textiles can’t be overstated. Engaging in this circular economy saves money, eliminates fabric waste, and turns fabric into a renewable resource!

Causes of Environmental Problems

The causes of environmental problems usually come back to excess consumption . As the human population expands we are also collectively demanding more resources per person.

Humans want to use more energy, more precious metals, more water, more food, and more luxurious items like fashionable clothing and multiple vehicles.

All of these demands can be met, but only by expending more of the earth’s natural resources. Metals and fossil fuels are non-renewable so as demand increases the price goes up and the supply goes down.

The key to so many of our major environmental problems is to decrease personal consumption.

Why are environmental problems common in developing countries?

Good question and the answer comes back to excess consumption . Many developing countries receive our excess clothing, recyclables, and used goods.

They develop a market around these used goods, but there is simply too much. It ends up in massive waste piles because many of the goods we discard are low-quality and non-recyclable.

Developing countries lack the infrastructure to deal with polluted water, overflowing landfills, and piles of unused recyclables so they stay in the environment creating health and environmental hazards.

One example is electronics recycling. While we all want to reap the benefits of recycling electronics , when they’re sent overseas for recycling the results are dangerous.

“Informal” recyclers are exposed to extremely high levels of neurotoxins and carcinogens as they break down e-waste by hand to recover gold, silver, copper, and other precious metals.

Instead of exposing the poor to these hazardous materials we should be doing the recycling at home and helping to develop a clean recycling industry abroad.

Final Thoughts

We’ve discussed 10 global environmental problems, and most of them center around the demands of the economically developed world.

The problems we face on planet earth can seem overwhelming, but they aren’t. We can solve them beginning with our own buying and consumption habits .

We can become involved in clean-up efforts in our own communities. We can lobby for domestic recycling plants.

We can help educate our own community members about why recycling is important and why it’s vital to do it right.

What do you think about these environmental problems and solutions? Do you have more ideas for how we can help to solve these environmental problems? Let us know in the comments below!

Leave a Comment Cancel reply

Save my name, email, and website in this browser for the next time I comment.

How to reduce human-caused environmental changes

The diversity on Earth aids the health and quality of human life. It provides the food we eat, the clothes we wear, and the air we breathe. But what do we do to serve the Earth? Human impact makes the environment less able to sustain life due to “human-induced rapid environmental changes.” There is no way to escape the effect we have, but there are ways to lessen it in order to protect the beauty of Earth and the many species that inhabit it.

Biology professor Blaine Griffen shares solutions to the five main drivers of human-induced rapid environmental changes:

1. Overexploitation of resources

Let’s take it back to the basics and reduce, reuse, and recycle. Recycling is the most familiar of the three solutions, but we should turn our focus to the other two to achieve the greatest positive impact. Learn how to reuse everyday items. DIY culture has promoted the ability to repurpose almost anything. Utilize the internet to find out what you can do. Reducing is effective economically and environmentally. One way we can reduce is by being extra cautious about the overexploitation of water. Don’t keep your water running and cut down on lawn sprinkler systems.

2. Habitat destruction

We are part of the ecosystem that we live in, so we must support it. The humans vs. nature predicament has never been a productive one and leads to a destructive mindset. Changing this mindset can lead you to be more mindful and respectful of hiking trails, your camping footprint, and nature in general. We are meant to enjoy the beauty of nature, but we should not feel entitled to abuse it.

3. Invasive species

Invasive species prove their destructive nature by causing extinctions, competing with other species, and reducing diversity in the ecosystems they invade, but they also cost the US economy approximately 120 billion dollars per year. Three easy combative measures we can take against invasive species include, never releasing pets into the environment, cleaning boats after removing them from the water, and planting native species in your yard.

4. Pollution

Whether it is trash, chemicals, or light, the whole Earth suffers from pollution, and, luckily, we can alleviate the problem through simple efforts.

Some solutions include:

  • Avoiding excess use of pesticides and fertilizer. Following instructions helps to avoid infecting ground water and causing pollution. 
  • Picking up litter so it isn’t ingested by animals or infecting waterways.
  • Minimizing the use of outside lights. 
  • Learning to enjoy nature quietly.  

5. Climate change

Broad scale problems like climate change aren’t easily solved, but simple efforts make a difference. Consider your modes of transportation, electricity use, and the benefits of buying locally. Making choices that consider the climate change problem are healthy for the planet and you.

We need to abandon the feeling of hopelessness we may feel in regards to environmental problems. We must work together to have the power to make change, otherwise nothing will get better.

Five solutions to human-caused environmental changes

What's the environmental impact of space debris and how can we solve it?

Space industry should help solve climate change not worsen it.

Space industry should help solve climate change not worsen it. Image:  Pexels.

.chakra .wef-1c7l3mo{-webkit-transition:all 0.15s ease-out;transition:all 0.15s ease-out;cursor:pointer;-webkit-text-decoration:none;text-decoration:none;outline:none;color:inherit;}.chakra .wef-1c7l3mo:hover,.chakra .wef-1c7l3mo[data-hover]{-webkit-text-decoration:underline;text-decoration:underline;}.chakra .wef-1c7l3mo:focus,.chakra .wef-1c7l3mo[data-focus]{box-shadow:0 0 0 3px rgba(168,203,251,0.5);} Rajeev Suri

A hand holding a looking glass by a lake

.chakra .wef-1nk5u5d{margin-top:16px;margin-bottom:16px;line-height:1.388;color:#2846F8;font-size:1.25rem;}@media screen and (min-width:56.5rem){.chakra .wef-1nk5u5d{font-size:1.125rem;}} Get involved .chakra .wef-9dduvl{margin-top:16px;margin-bottom:16px;line-height:1.388;font-size:1.25rem;}@media screen and (min-width:56.5rem){.chakra .wef-9dduvl{font-size:1.125rem;}} with our crowdsourced digital platform to deliver impact at scale

Listen to the article

  • The rise in the number of satellites being launched into space is unsustainable.
  • Satellites mega-constellations pose a risk to climate and the environment.
  • Tighter global regulation is needed to ensure space sustainability.

The space industry likes to see itself as an integral player in the battle against climate change. On a superficial level, this perception is justified. Space science and exploration have fostered a deeper understanding of our planet and satellite communications will allow for a more efficient use of the planet’s resources.

But the space sector is far from the pristine custodian that it claims to be. The industry is in the grip of an unprecedented investment spree. Collectively, we are sending more and more objects into space every year and, at the current rate of expansion, we risk decimating the value of space for future generations. Unless we act now, an environmental crisis will be created in space, which could hamper our efforts to tackle climate change here on earth.

Mega-constellations in space pose a threat to climate

The present pace of growth is unsustainable. Over the past six decades, about 11,000 satellites have been launched, of which 7,000 remain in space. But that number could swell to the hundreds of thousands by the end of this decade as private companies like Elon Musk’s Starlink and Amazon join China and other nation states in building mega-constellations in Low Earth Orbit (LEO).

Some of these new constellations will boast tens of thousands of satellites. Each one will have an expected life of between five and 10 years, creating vast amounts of space debris that will clutter their own orbit and endanger anything passing through it.

The environmental dangers of such space debris are myriad, including light pollution that would hinder future scientific discovery. Just as worrying are satellite re‑entries from the mega‑constellations, which could deposit hazardous levels of alumina into the upper atmosphere. The resulting solar radiation would have pernicious consequences for the environment. The planned mega-constellations could throttle competition and innovation too, if one country or company comes to dominate a particular orbit.

Have you read?

A new space-based invention will radically improve climate change forecasts - here’s how, will the battle for space happen on the ground, space junk: what it is and why cleaning it up matters.

However the smart use of space can enhance life on earth. Satellites are reducing emissions in the aviation industry by optimising flight paths and help container ships boost efficiency and profitability. Elsewhere, space technology helps us measure global carbon emissions more accurately, allows farmers to boost yields and feed the world’s growing population more sustainably. Satellites will be essential if we are to connect the roughly three billion people who have yet to use the internet. Whole industries, from mining to retail, simply would not be able to operate without satellite communications.

But the rules that govern this precious asset are no longer fit for purpose. The current regulatory regime lacks teeth; it relies on actors’ willingness to play fair and there are no meaningful penalties to deter rule breaking. Since joining Inmarsat as Chief Executive last year, I have lost count of the times I have heard space regulation described as a "wild west". The epithet is merited.

Many of the benefits of space-based communications are already possible using low-risk geostationary satellite constellations, positioned in high orbit, with more to come helped by the advent of LEO satellites. But we should all be worried about the scale, sustainability and safety issues created by the number of LEO mega-constellations now in development. The potential risks may outweigh the benefits.

Regulation is needed to address space sustainability

To avoid catastrophe, space industry leaders, regulators and governments should work towards a solution based on five principles, which Inmarsat outlined in a recent Space Sustainability Report .

First, we need a level playing field for operators globally. Second, a new regulatory framework must allow for robust enforcement, including penalties for companies that flout the rules. Third, we must increase investment in data and analytical tools to ensure a better understanding of the underlying science. Fourth, we need to detach sustainability from national security concerns; countries should be able to share information about the location of their satellites without revealing their purpose. Finally, regulations must be put in place rapidly and then improved over time as new technologies emerge at lightning speed.

We have no time to waste in finding solutions to these challenges. At the national level, regulators must take immediate action to ensure vibrant competition beyond a handful of LEO mega-constellations. Nations need to rethink how they grant market access and exclude irresponsible actors.

Climate change poses an urgent threat demanding decisive action. Communities around the world are already experiencing increased climate impacts, from droughts to floods to rising seas. The World Economic Forum's Global Risks Report continues to rank these environmental threats at the top of the list.

To limit global temperature rise to well below 2°C and as close as possible to 1.5°C above pre-industrial levels, it is essential that businesses, policy-makers, and civil society advance comprehensive near- and long-term climate actions in line with the goals of the Paris Agreement on climate change.

The World Economic Forum's Climate Initiative supports the scaling and acceleration of global climate action through public and private-sector collaboration. The Initiative works across several workstreams to develop and implement inclusive and ambitious solutions.

This includes the Alliance of CEO Climate Leaders, a global network of business leaders from various industries developing cost-effective solutions to transitioning to a low-carbon, climate-resilient economy. CEOs use their position and influence with policy-makers and corporate partners to accelerate the transition and realize the economic benefits of delivering a safer climate.

Contact us to get involved.

At the multilateral level, countries with the largest footprint in space must come together to agree some basic standards, such as limiting the number of satellites in a given orbital shell. The coalition of the willing Inmarsat has proposed would initially include the UK, Europe, US, Japan, Brazil, Australia and other like-minded countries.

At the global level, which is the most critical for a long-term sustainable solution, the ITU, the United Nations agency for information and communications, should be given the mandate and resources to address issues of space sustainability. The ITU is not perfect, but it has proven its worth ensuring the equitable and rational use of spectrum.

Through a lack of smart regulation and foresight, the planet’s resources have been mismanaged and we are all paying the price. The lesson of climate crisis is that prevention is better than the cure.

Don't miss any update on this topic

Create a free account and access your personalized content collection with our latest publications and analyses.

License and Republishing

World Economic Forum articles may be republished in accordance with the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Public License, and in accordance with our Terms of Use.

The views expressed in this article are those of the author alone and not the World Economic Forum.

The Agenda .chakra .wef-n7bacu{margin-top:16px;margin-bottom:16px;line-height:1.388;font-weight:400;} Weekly

A weekly update of the most important issues driving the global agenda

Featured Topics

Featured series.

A series of random questions answered by Harvard experts.

Explore the Gazette

Read the latest.

A gate into Harvard Yard.

Overseer, HAA elected director elections ballot set

Baratunde Thurston.

Class of 1999 elects Baratunde Thurston as chief marshal of alumni

Alondra Nelson.

Need for moral revolution

Eyes on tomorrow, voices of today.

Candice Chen '22 (left) and Noah Secondo '22.

Photos by Stephanie Mitchell/Harvard Staff Photographer

Alvin Powell

Harvard Staff Writer

Harvard students share thoughts, fears, plans to meet environmental challenges

For many, thinking about the world’s environmental future brings concern, even outright alarm.

There have been, after all, decades of increasingly strident warnings by experts and growing, ever-more-obvious signs of the Earth’s shifting climate. Couple this with a perception that past actions to address the problem have been tantamount to baby steps made by a generation of leaders who are still arguing about what to do, and even whether there really is a problem.

It’s no surprise, then, that the next generation of global environmental leaders are preparing for their chance to begin work on the problem in government, business, public health, engineering, and other fields with a real sense of mission and urgency.

The Gazette spoke to students engaged in environmental action in a variety of ways on campus to get their views of the problem today and thoughts on how their activities and work may help us meet the challenge.

Eric Fell and Eliza Spear

Fell is president and Spear is vice president of Harvard Energy Journal Club. Fell is a graduate student at the Harvard John H. Paulson School of Engineering and Applied Sciences and Spear is a graduate student in the Department of Chemistry and Chemical Biology.

FELL:   For the past three centuries, fossil fuels have enabled massive growth of our civilization to where we are today. But it is now time for a new generation of cleaner-energy technologies to fuel the next chapter of humanity’s story. We’re not too late to solve this environmental challenge, but we definitely shouldn’t procrastinate as much as we have been. I don’t worry about if we’ll get it done, it’s the when. Our survival depends on it. At Harvard, I’ve been interested in the energy-storage problem and have been focusing on developing a grid-scale solution utilizing flow batteries based on organic molecules in the lab of Mike Aziz . We’ll need significant deployment of batteries to enable massive penetration of renewables into the electrical grid.

SPEAR: Processes leading to greenhouse-gas emissions are so deeply entrenched in our way of life that change continues to be incredibly slow. We need to be making dramatic structural changes, and we should all be very worried about that. In the Harvard Energy Journal Club, our focus is energy, so we strive to learn as much as we can about the diverse options for clean-energy generation in various sectors. A really important aspect of that is understanding how much of an impact those technologies, like solar, hydro, and wind, can really have on reducing greenhouse-gas emissions. It’s not always as much as you’d like to believe, and there are still a lot of technical and policy challenges to overcome.

I can’t imagine working on anything else, but the question of what I’ll be working on specifically is on my mind a lot. The photovoltaics field is at a really exciting point where a new technology is just starting to break out onto the market, so there are a lot of opportunities for optimization in terms of performance, safety, and environmental impact. That’s what I’m working on now [in Roy Gordon’s lab ] and I’m really enjoying it. I’ll definitely be in the renewable-energy technology realm. The specifics will depend on where I see the greatest opportunity to make an impact.

Photo (left) courtesy of Kritika Kharbanda; photo by Tiera Satchebell.

Kritika Kharbanda ’23 and Laier-Rayshon Smith ’21

Kharbanda is with the Harvard Student Climate Change Conference, Harvard Circular Economy Symposium. Smith is a member of Climate Leaders Program for Professional Students at Harvard. Both are students at Harvard Graduate School of Design.

KHARBANDA: I come from a country where the most pressing issues are, and will be for a long time, poverty, food shortage, and unemployment born out of corruption, illiteracy, and rapid gentrification. India was the seventh-most-affected country by climate change in 2019. With two-thirds of the population living in rural areas with no access to electricity, even the notion of climate change is unimaginable.

I strongly believe that the answer lies in the conjugality of research and industry. In my field, achieving circularity in the building material processes is the burning concern. The building industry currently contributes to 40 percent of global carbon dioxide emissions, of which 38 percent is contributed by the embedded or embodied energy used for the manufacturing of materials. A part of the Harvard i-lab, I am a co-founder of Cardinal LCA, an early stage life-cycle assessment tool that helps architects and designers visualize this embedded energy in building materials, saving up to 46 percent of the energy from the current workflow. This venture has a strong foundation as a research project for a seminar class I took at the GSD in fall 2020, instructed by Jonathan Grinham. I am currently working as a sustainability engineer at Henning Larsen architects in Copenhagen while on a leave of absence from GSD. In the decades to come, I aspire to continue working on the embodied carbon aspect of the building industry. Devising an avant garde strategy to record the embedded carbon is the key. In the end, whose carbon is it, anyway?

SMITH: The biggest challenges are areas where the threat of climate change intersects with environmental justice. It is important that we ensure that climate-change mitigation and adaptation strategies are equitable, whether it is sea-level rise or the increase in urban heat islands. We should seek to address the threats faced by the most vulnerable communities — the communities least able to resolve the threat themselves. These often tend to be low-income communities and communities of color that for decades have been burdened with bearing the brunt of environmental health hazards.

During my time at Harvard, I have come to understand how urban planning and design can seek to address this challenge. Planners and designers can develop strategies to prioritize communities that are facing a significant climate-change risk, but because of other structural injustices may not be able to access the resources to mitigate the risk. I also learned about climate gentrification: a phenomenon in which people in wealthier communities move to areas with lower risks of climate-change threats that are/were previously lower-income communities. I expect to work on many of these issues, as many are connected and are threats to communities across the country. From disinvestment and economic extraction to the struggle to find quality affordable housing, these injustices allow for significant disparities in life outcomes and dealing with risk.

Lucy Shaw ’21

Shaw is co-president of the HBS Energy and Environment Club. She is a joint-degree student at Harvard Business School and Harvard Kennedy School.

SHAW: I want to see a world where climate change is averted and the environment preserved, without it being at the expense of the development and prosperity of lower-income countries. We have, or are on the cusp of having, many of the financial and technological tools we need to reduce emissions and environmental damage from a wide array of industries, such as agriculture, energy, and transport. The challenge I am most worried about is how we balance economic growth and opportunity with reducing humanity’s environmental impact and share this burden equitably across countries.

I came to Harvard as a joint degree student at the Kennedy School and Business School to be able to see this challenge from two different angles. In my policy-oriented classes, we learned about the opportunities and challenges of global coordination among national governments — the difficulty in enforcing climate agreements, and in allocating and agreeing on who bears the responsibility and the costs of change, but also the huge potential that an international framework with nationally binding laws on environmental protection and carbon-emission reduction could have on changing the behavior of people and businesses. In my business-oriented classes, we learned about the power of business to create change, if there is a driven leadership. We also learned that people and businesses respond to incentives, and the importance of reducing cost of technologies or increasing the cost of not switching to more sustainable technologies — for example, through a tax. After graduate school, I plan to join a leading private equity investor in their growing infrastructure team, which will equip me with tools to understand what makes a good investment in infrastructure and what are the opportunities for reducing the environmental impact of infrastructure while enhancing its value. I hope to one day be involved in shaping environmental and development policy, whether it is on a national or international level.

Photo (left) by Tabitha Soren.

Quinn Lewis ’23 and Suhaas Bhat ’24

Both are with the Student Climate Change Conference, Harvard College.

LEWIS:   When I was a kid, I imagined being an adult as a future with a stable house, a fun job, and happy kids. That future didn’t include wildfires that obscured the sun for months, global water shortages, or billionaires escaping to terrariums on Mars. The threats are so great and so assured by inaction that it’s very hard for me to justify doing anything else with my time and attention because very little will matter if there’s 1 billion climate refugees and significant portions of the continental United States become uninhabitable for human life.

For whatever reason, I still feel a great deal of hope around giving it a shot. I can’t imagine not working to mitigate the climate crisis. Media and journalism will play a huge role in raising awareness, as they generate public pressure that can sway those in power. Another route for change is to cut directly to those in power and try to convince them of the urgency of the situation. Given that I am 22 years old, it is much easier to raise public awareness or work in media and journalism than it is to sit down with some of the most powerful people on the planet, who tend to be rather busy. At school, I’m on a team that runs the University-wide Student Climate Change Conference at Harvard, which is a platform for speakers from diverse backgrounds to discuss the climate crisis and ways students and educators can take immediate and effective action. Also, I write about and research challenges and solutions to the climate crisis through the lenses of geopolitics and the global economy, both as a student at the College and as a case writer at the Harvard Business School. Outside of Harvard, I have worked in investigative journalism and at Crooked Media, as well as on political campaigns to indirectly and directly drive urgency around the climate crisis.

BHAT:   The failure to act on climate change in the last few decades, despite mountains of scientific evidence, is a consequence of political and institutional cowardice. Fossil fuel companies have obfuscated, misinformed, and lobbied for decades, and governments have failed to act in the best interests of their citizens. Of course, the fight against climate change is complex and multidimensional, requiring scientific, technical, and entrepreneurial expertise, but it will ultimately require systemic change to allow these talents to shine.

At Harvard, my work on climate has been focused on running the Harvard Student Climate Conference, as well as organizing for Fossil Fuel Divest Harvard. My hope for the Climate Conference is to provide students access to speakers who have dedicated their careers to all aspects of the fight against climate change, so that students interested in working on climate have more direction and inspiration for what to do with their careers. We’ve featured Congresswoman Ayanna Pressley, members of the Sunrise Movement, and the CEO of Impossible Foods as some examples of inspiring and impactful people who are working against climate change today.

I organize for FFDH because I believe that serious institutional change is necessary for solving the climate crisis and also because of a sort of patriotism I have for Harvard. I deeply respect and care for this institution, and genuinely believe it is an incredible force for good in the world. At the same time, I believe Harvard has a moral duty to stand against the corporations whose misdeeds and falsification of science have enabled the climate crisis.

Libby Dimenstein ’22

Dimenstein is co-president of Harvard Law School Environmental Law Society.

DIMENSTEIN:   Climate change is the one truly existential threat that my generation has had to face. What’s most scary is that we know it’s happening. We know how bad it will be; we know people are already dying from it; and we still have done so little relative to the magnitude of the problem. I also worry that people don’t see climate change as an “everyone problem,” and more as a problem for people who have the time and money to worry about it, when in reality it will harm people who are already disadvantaged the most.

I want to recognize Professor Wendy Jacobs, who recently passed away. Wendy founded HLS’s fantastic Environmental Law and Policy Clinic, and she also created an interdisciplinary class called the Climate Solutions Living Lab. In the lab, groups of students drawn from throughout the University would conduct real-world projects to reduce greenhouse-gas emissions. The class was hard, because actually reducing greenhouse gases is hard, but it taught us about the work that needs to be done. This summer I’m interning with the Environmental Defense Fund’s U.S. Clean Air Team, and I anticipate a lot of my work will revolve around the climate. After graduating, I’m hoping to do environmental litigation, either with a governmental division or a nonprofit, but I also have an interest in policy work: Impact litigation is fascinating and important, but what we need most is sweeping policy change.

Candice Chen ’22 and Noah Secondo ’22

Chen and Secondo are co-directors of the Harvard Environmental Action Committee. Both attend Harvard College.

SECONDO: The environment is fundamental to rural Americans’ identity, but they do not believe — as much as urban Americans — that the government can solve environmental problems. Without the whole country mobilized and enthusiastic, from New Hampshire to Nebraska, we will fail to confront the climate crisis. I have no doubt that we can solve this problem. To rebuild trust between the U.S. government and rural communities, federal departments and agencies need to speak with rural stakeholders, partner with state and local leaders, and foreground rural voices. Through the Harvard College Democrats and the Environmental Action Committee, I have contributed to local advocacy efforts and creative projects, including an environmental art publication.

I hope to work in government to keep the policy development and implementation processes receptive to rural perspectives, including in the environmental arena. At every level of government, if we work with each other in good faith, we will tackle the climate crisis and be better for it.

CHEN: I’m passionate about promoting more sustainable, plant-based diets. As individual consumers, we have very little control over the actions of the largest emitters, massive corporations, but we can all collectively make dietary decisions that can avoid a lot of environmental degradation. Our food system is currently very wasteful, and our overreliance on animal agriculture devastates natural ecosystems, produces lots of potent greenhouse gases, and creates many human health hazards from poor animal-waste disposal. I feel like the climate conversation is often focused around the clean energy transition, and while it is certainly the largest component of how we can avoid the worst effects of global warming, the dietary conversation is too often overlooked. A more sustainable future also requires us to rethink agriculture, and especially what types of agriculture our government subsidizes. In the coming years, I hope that more will consider the outsized environmental impact of animal agriculture and will consider making more plant-based food swaps.

To raise awareness of the environmental benefits of adopting a more plant-based diet, I’ve been involved with running a campaign through the Environmental Action Committee called Veguary. Veguary encourages participants to try going vegetarian or vegan for the month of February, and participants receive estimates for how much their carbon/water/land use footprints have changed based on their pledged dietary changes for the month.

Photo (left) courtesy of Cristina Su Liu.

Cristina Su Liu ’22 and James Healy ’21

More like this.

Denis Hayes on phone as associate holds posters advertising Environmental Teach-In in 1970.

How Earth Day gave birth to environmental movement

Student in gas mask "smalls" a flower in New York on the first Earth Day.

The culture of Earth Day

Watercolor of Earth.

Spirituality, social justice, and climate change meet at the crossroads

Liu is with Harvard Climate Leaders Program for Professional Students. Healy is with the Harvard Student Climate Change Conference. Both are students at Harvard T.H. Chan School of Public Health.

HEALY:   As a public health student I see so many environmental challenges, be it the 90 percent of the world who breathe unhealthy air, or the disproportionate effects of extreme heat on communities of color, or the environmental disruptions to the natural world and the zoonotic disease that humans are increasingly being exposed to. But the central commonality at the heart of all these crises is the climate crisis. Climate change, from the greenhouse-gas emissions to the physical heating of the Earth, is worsening all of these environmental crises. That’s why I call the climate crisis the great exacerbator. While we will all feel the effects of climate change, it will not be felt equally. Whether it’s racial inequity or wealth inequality, the climate crisis is widening these already gaping divides.

Solutions may have to be outside of our current road maps for confronting crises. I have seen the success of individual efforts and private innovation in tackling the COVID-19 pandemic, from individuals wearing masks and social distancing to the huge advances in vaccine development. But for climate change, individual efforts and innovation won’t be enough. I would be in favor of policy reform and coalition-building between new actors. As an overseer of the Harvard Student Climate Change Conference and the Harvard Climate Leaders Program, I’ve aimed to help mobilize Harvard’s diverse community to tackle climate change. I am also researching how climate change makes U.S. temperatures more variable, and how that’s reducing the life expectancies of Medicare recipients. The goal of this research, with Professor Joel Schwartz, will be to understand the effects of climate change on vulnerable communities. I certainly hope to expand on these themes in my future work.

SU LIU:  A climate solution will need to be a joint effort from the whole society, not just people inside the environmental or climate circles. In addition to cross-sectoral cooperation, solving climate change will require much stronger international cooperation so that technologies, projects, and resources can be developed and shared globally. As a Chinese-Brazilian student currently studying in the United States, I find it very valuable to learn about the climate challenges and solutions of each of these countries, and how these can or cannot be applied in other settings. China-U.S. relations are tense right now, but I hope that climate talks can still go ahead since we have much to learn from each other.

Personally, as a student in environmental health at [the Harvard Chan School], I feel that my contribution to addressing this challenge until now has been in doing research, learning more about the health impacts of climate change, and most importantly, learning how to communicate climate issues to people outside climate circles. Every week there are several climate-change events at Harvard, where a different perspective on climate change is addressed. It has been very inspiring for me, and I feel that I could learn about climate change in a more holistic way.

Recently, I started an internship at FXB Village, where I am working on developing and integrating climate resilience indicators into their poverty-alleviation program in rural communities in Puebla, Mexico. It has been very rewarding to introduce climate-change and climate-resilience topics to people working on poverty alleviation and see how everything is interconnected. When we address climate resilience, we are also addressing access to basic services, livelihoods, health, equity, and quality of life in general. This is where climate justice is addressed, and that is a very powerful idea.

You might like

Candidates as they will appear on the ballot

Baratunde Thurston.

Writer, TV host, comedian, commentator to join in 125-year-old tradition

Alondra Nelson.

Social scientist, former Biden official Alondra Nelson says work of new Center for Race, Inequality and Social Equity can help shape policy, progress

So what exactly makes Taylor Swift so great?

Experts weigh in on pop superstar's cultural and financial impact as her tours and albums continue to break records.

Cancer keeps coming for the young. Why?

Harvard’s Kimmie Ng among gastrointestinal specialists hunting culprit behind global disease wave

Why are we unhappy?

Zen Buddhist teacher says it’s because we’re always struggling either to possess or avoid people, things, or situations

Environmental Protection

  • Climate Change
  • Electric Vehicles
  • Green/LEED Building
  • Transportation
  • News Archive
  • New Product of the Year
  • Latest Products
  • EP Industry Directory
  • Water Industry Directory
  • White Papers

how can we solve the environmental problems

Three Environmental Issues and Ways to Combat Them

For years now, humans have mistreated and contaminated the very environment that sustains them. But the broad concern for the environment can be so overwhelming that people don’t know what to do or where to start making a difference.

  • By Erich Lawson
  • Nov 25, 2019

For years now, humans have mistreated and contaminated the very environment that sustains them. But the broad concern for the environment can be so overwhelming that people don’t know what to do or where to start making a difference.

The list of issues surrounding our environment go on, but there are three major ones that affect the majority of them overall: global warming and climate change; water pollution and ocean acidification; and loss of biodiversity. These three issues need immediate attention and proactive action on our part to ensure conservation of the only habitable planet which we call our home. And, focusing attention on these three major topics will have a ripple effect on a number of smaller environmental issues like inefficient recycling systems and food waste.

Let’s look at three major environmental issues and some solutions which can help combat them:

Global Warming and Climate Change Human activities have made global warming and climate change a global threat. The rising levels of CO2 and other greenhouse gases have caused an increase in average global temperatures, extreme weather events, rising sea levels and other negative changes. These changes are directly and indirectly affecting all life forms. Pollution of air, land and water through excessive deforestation, industrialization and overfilling landfills which emits CO2 and adds to greenhouse gas emissions are all topmost causes of these environmental issues. Here are some effective solutions to these problems:

  • Invest in and encourage production of sustainable technology
  • Commercial and residential buildings should aim to achieve zero-emission or zero-waste
  • Improve waste compaction in landfills with smart technology like stationary compactors which helps free up space for other constructive uses. It comes in varying capacities and configurations for handling different volumes of trash
  • Increase forest cover, restore sea grasses and boost use of agricultural cover crops to reduce the amount of CO2 in atmosphere.

Water Pollution and Ocean Acidification Rapid urban development, improper sewage disposal by industries, oil spills, disposal of chemical and radioactive wastes, and plastic pollution are some of the major causes of water pollution. Today, water scarcity and polluted water are posing a big threat to the human existence across many nations of the world.

Ocean waters absorb around 30 percent of the carbon dioxide that is released in the atmosphere. Ocean acidification occurs when the CO2 absorbed by the seawater undergoes a series of chemical reactions which leads to increased concentration of hydrogen ions, thus making the seawater more acidic. This decreases the carbonate ions in the seawater which makes it difficult for clams, deep sea corals, oysters etc. to build and maintain their shells and other calcium carbonate structures. These changes in the ocean water chemistry can affect the behavior of other organisms also. This puts the entire ocean food web at risk. Listed below are some measures which can help prevent water pollution and ocean acidification :

  • Practice more effective measures to contain spills
  • Curtail storm water runoff and plant trees near water bodies to reduce soil erosion
  • Expand the network which monitors the measuring of acidity levels to provide researchers and shellfish farmers with long-term and real-time pH data
  • Incorporate ocean acidification threats into the coastal zone management plans of states
  • Increase marine protection measures

Loss of Biodiversity Biodiversity helps maintain the balance of the ecosystem and provides biological resources which are crucial for our existence. Habitat destruction, climate change, pollution, secondary extinction and introduced species are a few ways in which humans are wreaking havoc on the biodiversity of this planet. Loss of biodiversity can be countered in a number of ways:

  • Government should create and implement stricter policies and laws related to conservation of biodiversity
  • Stop habitat destruction and encourage its restoration
  • Practice sustainable living
  • Reduce invasive species
  • Research innovative ways to preserve biodiversity and educate the populace about it

Awareness and adaption are two key steps towards conserving this boon called environment. Each one of us can and should do their bit to curb the effects of these environmental issues and ensure that our future generations have a healthy planet to live.

About the Author

Erich Lawson is very passionate about the environment and is an advocate of effective recycling. He writes on a wide array of topics to inform readers on how modern recycling equipment can be used by industries to reduce monthly wastage bills and increase recycling revenue. You can learn more about environment saving techniques by visiting his blog on Compactor Management Company.

how can we solve the environmental problems

Related Articles

  • EPA Updates Equity Action Plan with New Commitments for 2023
  • EPA, Massachusetts Settle with City of Lowell Over Water Pollution Concerns
  • EPA Partners with the National Endowment for the Arts for New Artist-in-Residence Program

DuPont Introduces Tyvek Sustainable Healthcare Packaging Awards

  • EPA Awards Energy Star Certification to Vehicle Dealerships for First Time Ever

Preparing for How Climate Change Could Alter the Financial System

EPA Updates Equity Action Plan with New Commitments for 2023

  • Most Popular Articles
  • Most Emailed Articles

EPA Awards Nearly $11 Million in Wildfire Smoke Preparedness Funding

Epa lowers lead screening levels for residential soil, managing scope 2 emissions: burden or opportunity, marrs construction co. fined for lead safety violations on hgtv show, featured webinar, crafting certainty from uncertainty: scenario-based extreme weather planning.

This free educational webinar will provide a detailed process for climate-driven “pre-response” in a variety of key areas including: Supply Chain Disruptions, Employee Safety and Productivity, Regulatory and Compliance Risks …and many more areas.

DuPont Introduces Tyvek Sustainable Healthcare Packaging Awards

  • Environmental Health and Safety

Marrs Construction Co. Fined for Lead Safety Violations on HGTV Show

  • Chemicals and Toxins
  • Enforcement

EPA Awards Nearly $11 Million in Wildfire Smoke Preparedness Funding

  • Greenhouse Gases

EPA Lowers Lead Screening Levels for Residential Soil

in the light of the science!

  • Planet Earth
  • Strange News

How Can Science Help Solve Environmental Problems

Table of Contents:

Can science solve climate change? . The planet needs a backup plan. Investing in geoengineering research may offer some answers.

In this Tuesday, Jan. 20, 2015, file photo a plume of smoke billows from the coal-fired Merrimack Station in Bow, N.H. (Jim Cole/AP) WHAT HAPPENS if humans fail to cut carbon dioxide emissions enough to prevent worsening climate change? A new report from the National Research Council of the National Academy of Sciences contemplates some very unattractive — but potentially necessary — backup plans. Ending deforestation seems like an obvious answer. But, the report found, planting more trees won’t do enough to suck CO2 out of the air. Instead, humans might have to use decidedly less natural methods to counteract global warming. The report discusses two options. Scientists could try to reduce the amount of carbon dioxide in the atmosphere. Or they could reflect more sunlight back into space. This is called climate intervention or geoengineering, and it’s very controversial in scientific and environmental circles. Geoengineering poses all kinds of problems. Directly removing carbon dioxide from the air is a very slow process, and the removed gas would need to be stored somewhere.

Video advice: How can I get help with an environmental problem? – BBC Learning English

Humans have been polluting the world for a long time. So, how can you take action about something like climate change? Who would you blame? It’s not any one person, company, country, or government’s fault… or is it? Watch the video to find out.

How Can Science Help Solve Environmental Problems

The Clean Air Act: Solving Air Pollution Problems with Science and Technology

The Act calls for states and EPA to solve multiple air pollution problems through programs based on the latest science and technology information.

Under the Act, EPA and states (depending on the program) set emissions limits for motor vehicles and industrial facilities. In most programs, these limits are set using data on the emissions performance and costs of available technologies.

  • Setting air quality standards for common air pollutants based on protection of public health and welfare
  • Technical tools for policy analysis
  • Emissions and air quality data

National Air Emissions Standards Are Based on Technology Performance

EPA maintains AirData, which provides access to outdoor air quality data collected from state, local and tribal monitoring agencies across the United States. EPA publishes air emissions factors and compiles emissions inventories submitted by states every three years. This shows which sources emit how much pollution and support air quality modeling efforts. EPA publishes electronic reporting tool that sources can use to report stationary source emissions sampling test data to regulatory agencies. States and EPA conduct air pollution deposition monitoring to assess progress under the Clean Air Act. EPA’s periodic air trends reports on air quality and emissions in the United States represent one of the best and longest-running environmental trends assessments in the world. For greenhouse gases, EPA’s Greenhouse Gas Reporting Program will help us better understand where greenhouse gas emissions come from and will improve our ability to make informed policy, business, and regulatory decisions.

Save the Environment with technology

How can technology helpt to save the environment? Find out more about the innovations that may be useful to create a sustainable human existance.

Agriculture, biofuels and energy – Additionally to increasing the efficiency of straight line production processes, the circular economy aims to reuse factors that are typically considered waste. The aim of this sustainable development technique is to create products or services while reducing recycleables, water and consumption and waste. Taking care of may be the bioeconomy, by which either living microorganisms or their parts are utilized to assist the atmosphere – which could lead to the growth. Based on Eu calculations, every euro committed to R&D&I within the bioeconomy, funded at community level, will generate ten euros of added value in 2025. This data supports scientific and technical strategies that won’t only improve employment figures, but tend to also aid save the atmosphere.

Environmental science

“Environmental research” redirects here. For the Elsevier journal, see Environmental Research.

Ecological chemistry is study regarding chemical modifications in the atmosphere. Principal regions of study include soil contamination and water quality. The themes of research include chemical degradation within the atmosphere, multi-phase transport of chemicals (for instance, evaporation of the solvent that contains lake to yield solvent being an air pollutant), and chemical effects upon biota.

Environmental science is an interdisciplinary academic field that integrates physical, biological, and geography (including ecology, biology, physics, chemistry, plant science, zoology, mineralogy, oceanography, limnology, soil science, geology and physical geography, and atmospheric science) to the study of the environment, and the solution of environmental problems. Environmental science emerged from the fields of natural history and medicine during the Enlightenment. Today it provides an integrated, quantitative, and interdisciplinary approach to the study of environmental systems.

Cutting Through Environmental Issues: Technology as a double-edged sword

Brookings Review article by David Austin and Molly K. Macauley (Winter 2022)

Video advice: Studying vs Solving Environmental Problems Science Environmental Management

How Can Science Help Solve Environmental Problems

Adopting such technologies may not be a perfect solution, however, particularly in power generation. Some fuel cell technologies release carbon dioxide, a greenhouse gas. In addition, small-scale plants serving only residential areas or small businesses may be less able to balance the peaks in demand than are larger plants serving both types of customers.

Slack covers everything. It sifts in everywhere. Slack is what doesn’t melt in the mountains of red ore-a metal particle, powdered ore, powdered metal. It silts down all growing things. You can see the tiny bits of ore gleaming in your hands. The shining ore dusts your coat. It gets in your hair. On certain days they blow the slack out. Mighty currents of air blow the choking slack out of the costly mill chimneys onto the cheap human life outside. Those days the sun is darkened, and the steel workers returning home hide their faces as from a sand storm. They duck along, jackets over heads, under the fury of the falling slack. You find it everywhere. . . . Nothing, between soot and slack, can be clean long in the steel towns.

How chemistry is helping to improve the environment around us

As we strive towards a better world, we work to ensure chemistry’s contributions are realised. Chemistry can help us to understand, monitor, protect and improve the environment around us.

In 2013 we introduced together atmospheric chemists to go over the function of aerosols within the atmosphere at our Faraday Discussion: Tropospheric Aerosol – Formation, Transformation, Fate and Impacts. Read the papers printed plus the discussion within the Faraday Discussions journal.

  • How chemistry helps
  • Chemistry of air pollution
  • Monitoring air pollution
  • Tackling air pollution
  • UK science communiqué on climate change
  • Our statement on climate change

Our environment is a hugely complex system that includes the air we breathe, the land we live on, the water we drink and the climate around us. We must work to ensure that our developments in some areas do not adversely affect our environment whilst also ensuring that we mitigate any damage that has occurred. Work by some researchers has shown that we are already at a tipping point that might lead to “non-linear, abrupt environmental change within continental- to planetary-scale systems”.

The Use of Science in Environmental Decision Making

We need to do a better job of integrating scientific knowledge into management decision making. The world is too complicated, interconnected and dangerous to act without real scientific observations and analysis.

The amount of scientific literacy within the U . s . States is low by a lot of measures there isn’t grounds to rollout the information on science education within the U . s . States to help make the point. Having a determined effort, we’re able to overcome our science literacy problem, however i see no manifestation of deep worry about the condition of science education. The outcome in our insufficient science literacy are visible in making decisions within the White-colored House as well as in regulatory agencies like Environmental protection agency which are strongly fighting off science. Ecological science is viewed as biased as well as anti-capitalist. I’m certain this is actually the consequence of climate along with other ecological scientists expressing their alarm concerning the impact of pollution in the world as well as their effort to speak that threat. Rather of debating the validity of scientific findings on scientific grounds, many people reject ecological science entirely. This exacerbates our science literacy problem and it is profoundly troubling.

8 ways sensors helped solve environmental problems

Sophisticated, inexpensive sensors – combined with powerful data analytics have the potential to solve some of our greatest environmental challenges.

Mom’s Climate Pressure is really a network of 500,000 parents which are fighting for polluting of the environment limits. Let’s suppose these parents had data within their hands that directly connected bronchial asthma attacks to polluting of the environment in metropolitan areas over the U.S. once they met with Environmental protection agency managers and lobbied on Capitol Hill. The requirement for clearing up our air could be difficult to refute.

2022: Mapping air pollution with mobile sensors

When the Texas Advanced Computing Center analyzed this data, the center discovered a simple change to the direction of solar panel installation would increase efficiency. In the summer, electricity demand peaks in the late afternoon as people return home and turn up the air conditioning. Even though south-facing solar panels produce more total energy, their energy output drops in the afternoon. West-facing panels better match supply with peak demand.

How can science solve all of our problems?

Science can not solve all of our problems. While scientific understanding can help battle things like disease, hunger, and poverty when applied properly, it does not do so completely and automatically. Furthermore, there are many areas of life where science can have little impact. Let us look at some of the reasons why this is so.

To begin with, there’s a significant difference between knowing something and functioning on it. Science is worried with accumulating and understanding observations from the physical world. That understanding alone solves no problems. Individual individuals have to do something with that understanding for this to assist solve problems. For example, science finds that physical exercise can decrease your chance of cardiovascular disease. Knowing this truth is interesting, but it’ll do nothing at all for use on your heath unless of course you act upon it and really exercise. And that is hard part. Studying articles about being active is easy. Stepping into a real routine of standard being active is harder. Within this sense, science really solves no problems whatsoever. Troubles are only solved when individuals go ahead and take understanding (or tool, or pill, or whatever) supplied by science and employ it. Actually, a lot of humanity’s greatest problems come from insufficient action, and never insufficient understanding.

Video advice: Beyond the Science: Environmental Problems…Cultural Solutions

Science is the endeavor that allows us to describe our natural world and how it works. Science gives us the power and knowledge to understand our environment, recognize problems, and quantify threats. But science doesn’t tell us how to use that knowledge. Our planet’s most pressing environmental problems won’t be solved by science. Preserving water resources, facing the immediate and measurable threats from global climate change, reducing waste generation, and solving the myriad environmental challenges facing humans can only be achieved by cultural change. A society represents a collection of individual behaviors…every one of us is responsible for behavioral change. But do we have the personal and political wherewithal to make those changes before we must manage crises? Paul K. Doss is Professor of Geology at the University of Southern Indiana, where he teaches courses on environmental geology, environmental science, geology of national parks, and water resources. Doss directs student research on environmental problems, such as impacts of humans on water resources, natural resources management and geological hazards. He has previously held positions with Yellowstone National Park, Indiana Dunes and Everglades National Park. This talk was given at a TEDx event using the TED conference format but independently organized by a local community. Learn more at https://www.ted.com/tedx

How Can Science Help Solve Environmental Problems

How is science helping the environment?

Research, as well as scientific and technical innovation, will be critical to saving the environment , reducing the impact of global warming, helping in adapting to climate change, cleaning up polluted areas and taking care of our own health.

How can science help us understand environmental problems?

The scientific method begins with observations of a natural occurrence and then leads to the generation of questions based on the initial observations. ... In the case of the yellow grass, the scientific method was a valuable tool in solving the environmental problem and bringing awareness to the cause of the issue.

How can environmental problems be solved?

Recycle (& then recycle properly) Implementing recycling habits into your daily life is one of the most effective ways to help lessen landfill waste, conserve natural resources, save habitats, reduce pollution, cut down on energy consumption, and slow down global warming.

How does science affect the environment?

Environmental Science affects Earth by fostering an understanding of interconnectivity between nature and human activity , which can help us find ways of reducing our impact on the planet.

How is science helping improve the sustainability of the world?

Science is critical to tackle complex challenges for humanity such as climate change , biodiversity loss, pollution and poverty reduction, as it lays the foundation for new approaches and solutions. ... These concerns have led to a new approach: sustainability science.

Related Articles:

  • How To Solve Work Problems In Science
  • How To Solve Chemistry Problems
  • What Environmental Problems Can Be Solved By Biotechnology
  • How To Solve Chemistry Word Problems
  • How To Solve Numerical Problems In Physics
  • How To Solve Pipe Problems Thermodynamics

how can we solve the environmental problems

Science Journalist

Science atlas, our goal is to spark the curiosity that exists in all of us. We invite readers to visit us daily, explore topics of interest, and gain new perspectives along the way.

You may also like

How Do Optical Illusions Work Science Project

How Do Optical Illusions Work Science Project

How Many Marine Biology Jobs Are There

How Many Marine Biology Jobs Are There

What Is Declination And Inclination Geology

What Is Declination And Inclination Geology

Add comment, cancel reply.

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

Recent discoveries

What Is A Bachelor Of Applied Science

What Is A Bachelor Of Applied Science

What Is Statistical Thermodynamics

What Is Statistical Thermodynamics

How Science Works Exam Questions

How Science Works Exam Questions

How Can People Adapt With Shorter Innovation Cycles

How Can People Adapt With Shorter Innovation Cycles

  • Animals 3041
  • Astronomy 8
  • Biology 2281
  • Chemistry 482
  • Culture 1333
  • Health 8466
  • History 2152
  • Physics 913
  • Planet Earth 3239
  • Science 2158
  • Strange News 1230
  • Technology 3625

Random fact

Opioid Prescription Doses Are Frequently Being Tapered More Quickly Than Suggested

Opioid Prescription Doses Are Frequently Being Tapered More Quickly Than Suggested

  • Skip to main content
  • Keyboard shortcuts for audio player

Reduce, reuse, redirect outrage: How plastic makers used recycling as a fig leaf

Michael Copley

how can we solve the environmental problems

A registered scavenger, who mainly collects plastic waste to sell, walking in a landfill in Indonesia. Yasuyoshi Chiba /AFP via Getty Images hide caption

A registered scavenger, who mainly collects plastic waste to sell, walking in a landfill in Indonesia.

The plastics industry has worked for decades to convince people and policymakers that recycling would keep waste out of landfills and the environment. Consumers sort their trash so plastic packaging can be repurposed, and local governments use taxpayer money to gather and process the material. Yet from the early days of recycling, plastic makers, including oil and gas companies, knew that it wasn't a viable solution to deal with increasing amounts of waste, according to documents uncovered by the Center for Climate Integrity .

Around the time the plastics industry launched its recycling campaign, the head of a trade group called the Vinyl Institute acknowledged at a 1989 conference that "recycling cannot go on indefinitely, and does not solve the solid waste problem."

One of the biggest challenges is that making new plastic is relatively cheap. But recycling generally costs as much as or more than the material is worth, a director of environmental solutions at B.F. Goodrich explained at another industry meeting in 1992 . The "basic issue," he said, "is economics."

How Big Oil Misled The Public Into Believing Plastic Would Be Recycled

Investigations

How big oil misled the public into believing plastic would be recycled.

But the industry appears to have championed recycling mainly for its public relations value, rather than as a tool for avoiding environmental damage, the documents suggest. "We are committed to the activities, but not committed to the results," a vice president at Exxon Chemical said during a meeting in 1994 with staff for the American Plastics Council, a trade group.

Ross Eisenberg, president of an industry group called America's Plastic Makers, said in a statement that the report from the Center for Climate Integrity "cites outdated, decades-old technologies, and works against our goals to be more sustainable by mischaracterizing the industry and the state of today's recycling technologies. This undermines the essential benefits of plastics and the important work underway to improve the way plastics are used and reused to meet society's needs."

America's Plastic Makers has set a goal for all plastic packaging in the U.S. to be "reused, recycled, recovered by 2040," Eisenberg said.

The Center for Climate Integrity compiled the documents in a report titled " The Fraud of Plastic Recycling: How Big Oil and the plastics industry deceived the public for decades and caused the plastic waste crisis ." It builds on earlier investigations, including by NPR , that have shown the plastics industry promoted recycling even though its officials have long known that the activity would probably never be effective on a large scale.

The world is awash in plastic. Oil producers want a say in how it's cleaned up

The world is awash in plastic. Oil producers want a say in how it's cleaned up

Former industry officials have said the goal was to avoid regulations and ensure that demand for plastics, which are made from fossil fuels, kept growing. Despite years of recycling campaigns, less than 10% of plastic waste gets recycled globally , and the amount of plastic waste that's dumped in the environment continues to soar .

The idea that recycling can solve the problem of plastic waste "has always been a fraud, and it's always been a way for the industry to sell more plastic," says Richard Wiles, president of the Center for Climate Integrity, which says it is working to hold oil and gas companies accountable for their role in fueling climate change.

how can we solve the environmental problems

A pile of plastic waste and other garbage next to children playing on a bridge in the Philippines. George Calvelo /AFP via Getty Images hide caption

A pile of plastic waste and other garbage next to children playing on a bridge in the Philippines.

The U.N. is leading negotiations for a global plastics treaty

The Center for Climate Integrity published its report two months before the next round of United Nations talks is held in Canada for a legally binding global agreement on plastic waste. Negotiators from around 150 countries are expected to attend, as well as public health advocates, human rights activists, environmentalists and the oil and gas industry.

There's recently been growing concern among those who want deep cuts in plastic waste that plastic producers — corporations as well as countries such as China, Russia and Saudi Arabia — could weaken a global treaty by prioritizing recycling and other forms of waste management, rather than substantial cuts in new plastic production.

Global talks to cut plastic waste stall as industry and environmental groups clash

Global talks to cut plastic waste stall as industry and environmental groups clash

For fossil fuel producers, the petrochemical sector, which includes plastics, is crucial to business. As technologies like electric vehicles grow more popular, demand for products such as gasoline and diesel fuel is expected to decline . But oil and gas demand for petrochemicals is projected to continue rising for years . That's why the fossil fuel industry has a big stake in the outcome of the U.N. talks. If countries agree to reduce plastic manufacturing, it could hurt the industry's future profits.

Some experts say that creates a conflict of interest. Reducing how much new plastic gets made in the first place is a "prerequisite" to getting pollution under control, Carsten Wachholz, who works at the Ellen MacArthur Foundation and co-leads the Business Coalition for a Global Plastics Treaty, said late last year. But "if your businesses depend on extracting more oil and gas, and plastics is the fastest growing market for fossil fuels, it's hard to imagine that you would be a credible voice to say we need to limit plastic production," he said.

Global shift to clean energy means fossil fuel demand will peak soon, IEA says

Global shift to clean energy means fossil fuel demand will peak soon, IEA says

After the last round of negotiations ended in Kenya in November 2023, environmental groups complained that oil and gas producers blocked a final decision on how to advance the deliberations.

An industry advocacy group called American Fuel & Petrochemical Manufacturers has said that restricting fossil fuel production and plastic manufacturing are not good solutions. Instead, it said the goals of the treaty can be achieved "if waste is recyclable, properly managed and kept out of the environment."

An ExxonMobil spokesperson said in a statement in November 2023 that the company is "launching real solutions to address plastic waste and improve recycling rates." The company has previously said the problem of plastic waste can be solved without cutting how much plastic society uses.

Exxon is among a group of companies that have been investing in what the industry calls "advanced recycling" plants. The facilities are designed to turn plastic waste, including material that can't be processed through traditional mechanical recycling, into liquids and gasses that can then be used to make new plastics and other chemical products.

"Advanced recycling is a real, proven solution that can help address plastic waste and improve recycling rates," Exxon said in a statement to NPR.

However, critics say the technology is ineffective and harmful to the environment and human health.

The economics of plastic recycling "haven't changed at all. Not at all. And if virgin [plastic] was always cheaper and of higher quality, that's still the case today," says Wiles of the Center for Climate Integrity.

He says the plastics industry continues to mislead the public and needs to be held responsible for it.

"And from there, you can begin to have a conversation about how we're going to solve the problem," Wiles says. "But without accountability, you just can't get to solutions."

  • microplastics
  • oil and gas
  • climate change

Why record rain hasn’t washed away California’s water woes

John Kennedy watched in frustration Tuesday as floodwaters pulsed through the Santa Ana River, past systems the Orange County, Calif., water manager uses to capture precious water and send it underground. For a second consecutive winter, rain is not just falling on once-parched California — it’s inundating the Golden State in record-setting volume, faster than it can be saved.

Parts of normally sunny Los Angeles saw a foot of rain in recent days, sending mud and debris flowing through neighborhoods. Weeks earlier, more than a month’s worth of rain swamped San Diego in a day. The disasters come within a year of atmospheric rivers that left California with one of its largest-ever snowpacks, one that miraculously pulled the state out of a perennial drought crisis and provided respite from red-alert fire seasons of the recent past.

But storms like these won’t be able to wash away California’s long-term water worries Kennedy and the rest of the state hold: whether there will be enough water to sustain the state for the future.

When so much rain falls in such a short span of time, it overwhelms the natural and man-made systems that try to contain it. Rather than filling up reservoirs or sinking slowly into the soil, the floodwaters surge across landscapes and rip through communities before finally washing out to sea.

Even as dry periods are becoming longer and more severe, climate change is making precipitation events warmer, wetter and more intense — enhancing their destructiveness and making it more difficult for people and ecosystems to capture the rainfall as a buffer against drought.

This conundrum is yet another example of how human-caused warming is intensifying California’s climate of extremes and exacerbating its water challenges.

“When we do get these storm events, they’re going to be bigger and flashier, and we need to be better prepared to capture that water,” said Karla Nemeth, director of the state’s Department of Water Resources.

how can we solve the environmental problems

72-hour rainfall accumulation

Data as of Tuesday at 1 p.m. Eastern

San Francisco

Santa Barbara

Los Angeles

Source: NOAA National Severe Storms Laboratory

LAUREN TIERNEY/THE WASHINGTON POST

how can we solve the environmental problems

Achieving that is not a simple task. Assuming the wet trend continues, capturing more of the precious moisture will require major investments in a statewide system that is already highly engineered to get water from where it is most plentiful to massive population centers hundreds of miles away.

To confront the problem, California is exploring smarter ways to manage reservoir levels, husband precious snowpack and send more water from surface lakes and channels into sapped aquifers.

That’s because Californians know all too well that they have to take advantage of the precipitation while they can. At least for the next week, there is no sign of the stormy pattern resuming, said Julie Kalansky, a climate scientist at the Scripps Institution of Oceanography in San Diego.

“As quickly as that switch to wet weather goes on, it can switch back off,” she said.

Surges of rain are getting bigger

The state’s reservoir system alone cannot keep up with the recent surges of rain.

As the most recent storm approached, many California reservoirs were already near their capacity, forcing dam operators to release water from reservoirs to make room for the coming flows. By Tuesday, most were well ahead of historical averages, including the state’s largest reservoirs, lakes Oroville and Shasta.

Researchers and water managers have for years been studying whether they can hold more water in reservoirs by changing the rules that guide flood control releases. At one reservoir where they have tested a new strategy — using forecasts of precipitation and snowmelt to improve estimates of how much room in a reservoir is needed — they have managed to store as much as 19 percent more water by the end of the wet season, Kalansky said.

But because so much rain is coming in such massive storms, it can be hard to store more of it.

The state typically gets about half its annual precipitation from December through February, and many parts of Southern California exceeded that in just two days. Downtown Los Angeles received 49 percent of its annual average rainfall Sunday and Monday — with 7.03 inches over 48 hours, according to the National Weather Service.

The challenge ties back to global warming, and the physical reality that warmer air can hold more moisture. As climate change supercharges atmospheric rivers, research shows that it is also accelerating the intensity of the heaviest downpours and increasing the chance of multiple storms occurring in quick succession.

In studies she conducted as a doctoral student at Stanford University, civil engineer Corrine Bowers found that the highest intensity atmospheric river events are disproportionately likely to be sandwiched between other storms — overwhelming the landscape’s ability to absorb all the rain. Soils become saturated. Reservoirs approach capacity. Rivers reach — and then overtop — their banks.

If an atmospheric river occurs within five days of a prior storm, the associated damage can be as much as four times greater than if the event had happened in isolation. Such “super sequences” lasting at least two months could become two to three times more frequent by the end of the century, Bowers and her colleagues found .

‘We can’t rely on snowpack’ to store moisture

As California’s storms intensify, that can translate into a boom in snowpack, as was the case in 2023. Mild weather meant the massive melt extended well into the summer months.

But storms are also trending warmer, experts said. Rising temperatures in the mountains cause more precipitation to fall as rain, rather than snow, even at high elevations. This means snowpack is not as reliable a source of steady meltwater during the dry spring and summer months.

This winter, despite healthy rainfall, at 90 percent of normal for this point in the year, snowpack has lagged. The most recent storm pushed it to 72 percent of average for this point in the year, Nemeth said, though it is still less than half its normal total come April 1, when snow accumulation in the Sierra Nevada typically peaks.

“It really speaks to the need that California has to capture this water,” she said. “We can’t rely on snowpack in the future the way we once did.”

A race to capture water underground

With diminished snowpack and more intense yet brief storms, the difficult task of storing groundwater becomes even more important.

Last year, as mild weather allowed a record-tying snowpack to melt gradually, California officials reported moving 3.5 million acre feet of water through the State Water Project, a system of canals that carries water into reservoirs around the state.

But the state’s aquifers remain depleted. About a third of the 3,700 wells on the state’s live groundwater website remain below normal. More than 200 are at an all-time low.

Gov. Gavin Newsom (D) has a goal of increasing the amount of water the state sends back into aquifers by half a million acre feet. In places like the Westlands Water District, a Central Valley agricultural irrigation district that is the country’s largest, that was achieved through injection pumping into aquifers that were overpumped during drought years, Nemeth said.

Even with more water, that won’t be possible everywhere — overdraft has caused many aquifers around the state to collapse. But the state will need to find a way to take advantage of wet times as much as possible to reach its groundwater recharge goals, Nemeth said.

More places will have to develop robust programs to restore groundwater that provide multiple “access points” for surface water to seep into the aquifer, University of California Irvine civil engineer Brett Sanders said. Large basins serve as primary access points for groundwater to filter downward, holding large amounts of runoff and recycled wastewater that trickle into aquifers.

Communities also must add smaller green spaces to improve storage and prevent flooding by helping more water get into the ground, he said.

Without that, some communities will struggle to cope as precipitation surges. In Orange County, Kennedy’s district has one of the country’s most advanced groundwater recharge systems, which pulls the Santa Ana River’s flows as well as recycled wastewater into large basins, where the water can then trickle into the aquifer below. The system has allowed Orange County to almost halve its dependence on water imported from the Colorado River and the northern part of the state, insulating residents from the shortages plaguing much of the drought-stricken West.

But now, “there’s so much water coming down we’re not able to capture all of it,” Kennedy said. When the river is flowing so fast, it’s more difficult to divert into a recharge basin. Kennedy’s partners at the Army Corps of Engineers, which operates the Prado Dam upstream, are focused on managing the reservoir to prevent floods — which means they can’t hold back water for the district either.

When the storm is over, the Prado Dam operators will slowly release some remaining water back into the Santa Ana so that it can be directed into the Orange County recharge basins.

“But at the end of the day, with these large storms, some of the water is going to get past us,” Kennedy said.

Lauren Tierney contributed to this report.

More on climate change

Understanding our climate: Global warming is a real phenomenon , and weather disasters are undeniably linked to it . As temperatures rise, heat waves are more often sweeping the globe — and parts of the world are becoming too hot to survive .

What can be done? The Post is tracking a variety of climate solutions , as well as the Biden administration’s actions on environmental issues . It can feel overwhelming facing the impacts of climate change, but there are ways to cope with climate anxiety .

Inventive solutions: Some people have built off-the-grid homes from trash to stand up to a changing climate. As seas rise, others are exploring how to harness marine energy .

What about your role in climate change? Our climate coach Michael J. Coren is answering questions about environmental choices in our everyday lives. Submit yours here. You can also sign up for our Climate Coach newsletter .

  • Pollution fueling a sex imbalance among endangered green sea turtles November 26, 2023 Pollution fueling a sex imbalance among endangered green sea turtles November 26, 2023
  • This Fox News host gives climate skeptics airtime but went solar at home October 25, 2023 This Fox News host gives climate skeptics airtime but went solar at home October 25, 2023
  • How humans have altered the Earth enough to start a new chapter of geologic time June 20, 2023 How humans have altered the Earth enough to start a new chapter of geologic time June 20, 2023

how can we solve the environmental problems

AZ Animals

How Smart Are Chimpanzees? Everything We Know About Their Intelligence

W hen you look at the overall animal kingdom, chimpanzees rank at the top for intelligence. Chimps can communicate in complex ways, use tools, and solve problems. When compared to the human species, chimpanzees bear resemblance in their behavior and skills. While opposable thumbs allow them more control of their environment, these animals have an intelligence that goes beyond thumbs. So just how smart are chimpanzees? Learn everything we know about their intelligence, including their problem-solving skills and how they compare to other species.

The Chimpanzee’s Mental Abilities: An Overview

As a great ape, the chimpanzee possesses intelligence superior to most animals on the planet. A chimp’s genes determine about half of its intelligence, while environmental factors make up the other half. They are not passive thinkers who only learn based on punishment and reward, chimpanzees are active thinkers capable of making individual decisions. 

Like humans, chimps have a concept of self, meaning they remember past personal events and can look forward to the future. These animals can make choices that are not based on basic reflexes or conditioning. They understand cause and effect and can make judgments and decisions based on insightful reasoning. 

Chimps are aware of themselves and their own knowledge and limitations. In fact, they understand that other animals and humans have different mental states and perspectives different from their own. This understanding is called the “theory of mind,” and it was once believed to be solely unique to humans. 

The intelligence of chimpanzees is constantly being revealed as more studies come to light on their skills and abilities.

Cognitive Capabilities: Understanding Chimpanzee’s Problem-Solving Skills and Learning Aptitude

In humans, cognitive control involves self-knowledge, regulatory processes that allocate attention, evaluation of information, manipulation of information, the ability to plan for the future, and the ability to lessen distractions and impulsivity. During studies of cognitive control among chimpanzees, researchers found that these animals have a “psychological continuity with humans.”

Here is a list of a chimpanzee’s cognitive abilities:

  • They can exhibit self-control by distracting themselves as a way to delay gratification.
  • Chimpanzees have possession of an autobiographical self. They understand their past, present, and future, and they feel the pain of not being able to fulfill their needs. 
  • These animals have higher-order thinking, such as using language to communicate, make decisions, plan for the future, and process complex information.
  • They have the ability to choose
  • Chimps can recognize themselves in mirrors, on TV, or in photos.
  • They recognize body parts, even using flashlights and mirrors to examine themselves.
  • They have a sense of self and determination, including having goals and intentionally working towards them.
  • These animals can remember past events and anticipate the future.
  • Chimpanzees can understand number sequences, which include correlating Arabic symbols to exact quantities.
  • They can pick out tools they’ve never seen, guess what they are used for, and save them for future use.
  • Chimps can learn through observation and achieve the same results through other methods.
  • They are capable of deferred imitation, meaning they can recall how someone did something in the past and replicate their actions in real-time.

A Chimpanzee’s Cognitive Abilities in Communication and Social Situations

  • They understand they have minds and can reflect on their own thoughts. Chimps also understand that others have minds and may know things that they don’t. These animals have the capacity for empathy and can understand another’s situation, motives, and feelings.
  • Chimpanzees can intentionally communicate through gestures, vocalizations, and sign language. 
  • They use their imaginations in pretend play.
  • They make judgments about how people understand their sign language and will readjust how they ask things based on the response they receive. Chimps will also repeat phrases when dealing with inattentive partners. They communicate in a way that compares to a young human child.
  • Similar to children aged two through seven, chimpanzees will use sign language to talk to themselves, especially during imaginative play.
  • They can count items using touching, pointing, and rearranging. Their ability to store and recall information pertaining to numbers and sequences is on par with adult humans.
  • Chimps have moral inclinations and will even ostracize individuals who violate social norms.
  • They understand the difference between life and death and can feel grief and depression when someone dies.
  • Chimpanzees can make and use tools using two or more objects or use different tools in a sequence to achieve a goal.

Intelligence in the Animal Kingdom: Comparing Chimpanzee to Other Species

How smart are chimpanzees? Chimpanzees are among some of the smartest animals on Earth . When compared to other animals, chimps are similar in intelligence to orangutans, bottlenose dolphins, elephants , and African grey parrots. Among the great apes, orangutans are slightly more intelligent than chimpanzees due to their superior tool usage, such as being trained to use hammers and nails and even siphon liquids.

When compared to humans, chimps have intelligence on par with a human toddler or young child. Humans have more flexibility in our ability to learn and adapt, making our intelligence superior to that of the great apes. 

Past Discoveries and Studies on Chimpanzee’s Intelligence

Here are some studies on chimpanzee intelligence and what they concluded:

  • A study measuring personality, performance, and motivation using touchscreen tasks found that “chimpanzees possess broad intellectual capacities that are affected by their personalities.
  • This study found that an individual chimpanzee’s self-control directly correlated to its intelligence.
  • A study measuring chimpanzee intelligence found that differences in cognitive performance are heritable, meaning a chimp’s intelligence is largely determined by its genes.

The post How Smart Are Chimpanzees? Everything We Know About Their Intelligence appeared first on AZ Animals .

How Smart Are Chimpanzees? Everything We Know About Their Intelligence

IMAGES

  1. how to solve environmental pollution problem

    how can we solve the environmental problems

  2. solution to air pollution in rio

    how can we solve the environmental problems

  3. how to solve environmental pollution problem

    how can we solve the environmental problems

  4. Ways to Prevent and Reduce Air, Water, and Land Pollution

    how can we solve the environmental problems

  5. how to solve climate change problem

    how can we solve the environmental problems

  6. The Best Way to Solve the World’s Environmental Problem

    how can we solve the environmental problems

VIDEO

  1. environmental issues

  2. Environmental Issues

  3. ENVIRONMENT MIN. ON ENVIRONMENTAL ISSUES

COMMENTS

  1. 10 ways you can help fight the climate crisis

    1. Spread the word. Encourage your friends, family and co-workers to reduce their carbon pollution. Join a global movement like Count Us In, which aims to inspire 1 billion people to take practical steps and challenge their leaders to act more boldly on climate.

  2. 5 Simple Ways To Help Solve Environmental Problems

    Here are 5 simple ways you can help the environment and spark others to become more environmentally aware. 1. Replace disposable items with reusable. Anything you use and throw away can potentially spend centuries in a landfill. See below for simple adjustments you can make to decrease the amount of disposable items in your daily life. Use ...

  3. Are there real ways to fight climate change? Yes.

    Yes. Humans have the solutions to fight a global environmental crisis. Do we have the will? The evidence that humans are causing climate change, with drastic consequences for life on the planet ...

  4. 6 global environmental issues and ways you can help

    Educate yourself on the meanings of certifications and labeling, and advocate for better protection for farmed animals through new legislation propositions. 6. Food waste. Food waste and loss occurs along every step of food production, from farms to factories, to grocery stores and consumers.

  5. Causes and Solutions

    The world has solved global environmental problems before, by developing an understanding of the scope of the problem and coming together to develop a plan. ... No one argues that Earth's environmental problems are simple ones to solve, but there are several regulatory and policy approaches we can use to better take the environment into account.

  6. What Are the Solutions to Climate Change?

    Renewable Energy. Transitioning from fossil fuels to clean energy is the key to winning the fight against climate change. Here are the most common sources of renewable energy —and one source of ...

  7. Climate change: The environmental disasters we've almost fixed

    There are no simple solutions to complex problems like climate change. But there have been times in the past when the world has come together to try to fix an environmental crisis. How did we deal ...

  8. 10 Solutions for Climate Change

    It would also take far less land to grow the crops necessary to feed humans than livestock, allowing more room for planting trees. Stop Cutting Down Trees —Every year, 33 million acres of ...

  9. Solutions for a planet in crisis

    This will take time. Until then, we must do what we can - within the constraints of our circumstances, and no matter how small - to change our lifestyles. Friends, Look, there is no doubt we have made progress on environmental issues in the last few decades. We have more commitments than ever. We have more solutions than ever.

  10. 10 Solutions to climate change that will actually make a difference

    1. Shift to renewable energy sources in all key sectors. The United Nations identified a six-sector solution to climate change, focusing on actions that can be taken by the energy, industry, agriculture, transportation, nature-based solutions, and urban planning. If all of these actions are completed, the UN Environment Programme estimates we could reduce global carbon emissions by 29 to 32 ...

  11. What can we do to slow or stop global warming?

    Experts say it is likely many strategies working together will be needed. Generally speaking, here are some examples of mitigation strategies we can use to slow or stop the human-caused global warming ( learn more ): Where possible, we can switch to renewable sources of energy (such as solar and wind energy) to power our homes and buildings ...

  12. The five biggest threats to our natural world … and how we can stop

    Three-quarters of the land-based environment and about 66% of the marine environment have been ... "It is clear that we cannot solve ... The problem for islands: 'We have to be very careful' ...

  13. What You Can Do About Pollution Prevention

    Find EPA regional contact information, and state and local P2 technical assistance resources. Pollution prevention is not just the responsibility of businesses and government agencies. Citizens can help solve environmental problems by reducing pollution at the source, before it is created. We can all apply pollution prevention in our daily lives.

  14. 10 Environmental Problems and Solutions in 2023

    One thing we know is that the decisions we make today can have a major impact on the quality of life on planet earth in the future. 2. Water Pollution. Water pollution is an environmental problem that can include garbage, microplastics, chemicals, nitrogen fertilizers, and herbicides.

  15. How to reduce human-caused environmental changes

    Reducing human-caused environmental problems. 1. Overexploitation of resources. Let's take it back to the basics and reduce, reuse, and recycle. Recycling is the most familiar of the three solutions, but we should turn our focus to the other two to achieve the greatest positive impact. Learn how to reuse everyday items.

  16. 10 Environmental Problems and Solutions • EarthyB

    The Global Goals offer a solid framework for solving environmental problems. Now, on to the 10 biggest environmental problems we face today. 10 environmental problems. These are the 10 biggest environmental problems in no particular order. Climate change is a hot topic right now so I include it first.

  17. Facing our global environmental challenges requires efficient ...

    According to the United Nations, the extraction and processing of natural resources is the cause of half of global greenhouse gas emissions, and 80 to 90 per cent of biodiversity loss. Only nine per cent of man-made materials remain in circulation. Time is running out. We need a coordinated, comprehensive and swift response to these challenges.

  18. Environmental impact of space debris and how to solve it

    The rise in the number of satellites being launched into space is unsustainable. Satellites mega-constellations pose a risk to climate and the environment. Tighter global regulation is needed to ensure space sustainability. The space industry likes to see itself as an integral player in the battle against climate change.

  19. Harvard students share thoughts on environmental challenges

    SECONDO: The environment is fundamental to rural Americans' identity, but they do not believe — as much as urban Americans — that the government can solve environmental problems. Without the whole country mobilized and enthusiastic, from New Hampshire to Nebraska, we will fail to confront the climate crisis.

  20. Three Environmental Issues and Ways to Combat Them

    The list of issues surrounding our environment go on, but there are three major ones that affect the majority of them overall: global warming and climate change; water pollution and ocean acidification; and loss of biodiversity. These three issues need immediate attention and proactive action on our part to ensure conservation of the only ...

  21. How Can Science Help Solve Environmental Problems

    Scientists could try to reduce the amount of carbon dioxide in the atmosphere. Or they could reflect more sunlight back into space. This is called climate intervention or geoengineering, and it's very controversial in scientific and environmental circles. Geoengineering poses all kinds of problems.

  22. How artificial intelligence is helping tackle environmental ...

    Jensen highlights several areas where AI can play a role in tackling environmental challenges, from designing more energy-efficient buildings to monitoring deforestation to optimizing renewable energy deployment. "This can be on a large scale - such as satellite monitoring of global emissions, or a more granular scale - such as a smart ...

  23. New report unveils what plastic makers knew about recycling : NPR

    The idea that recycling can solve the problem of plastic waste "has always been a fraud, and it's always been a way for the industry to sell more plastic," says Richard Wiles, president of the ...

  24. Why California's storms, flooding doesn't end drought fears

    California rain can't wash away the state's long-term worry: whether there will be enough water to sustain the state for the future.

  25. How Smart Are Chimpanzees? Everything We Know About Their ...

    Chimps can communicate in complex ways, use tools, and solve problems. When compared to the human species, chimpanzees bear resemblance in their behavior and skills.