- Year 3 curriculum map

## Column addition

Unit 5 – 2 weeks

The PowerPoint file contains slides you can use in the classroom to support each of the learning outcomes for this unit, listed below. The slides are comprehensively linked to associated pedagogical guidance in the NCETM Primary Mastery Professional Development materials . There are also links to the ready-to-progress criteria detailed in the DfE Primary Mathematics Guidance 2020 .

## Classroom slides for this unit

All spring term units, learning outcomes, related pages.

- Curriculum prioritisation in primary maths

Is there anything wrong with this page?

## Subscribe to our newsletter

A collaborative national network developing and spreading excellent practice, for the benefit of all pupils and students.

## About this website

Stay connected.

Teaching support from the UK’s largest provider of in-school maths tuition

resources downloaded

one to one lessons

schools supported

Consolidate learning and plug gaps

In-school online one to one maths tuition developed by maths teachers and pedagogy experts

Hundreds of FREE online maths resources!

Daily activities, ready-to-go lesson slides, SATs revision packs, video CPD and more!

## What Is Column Addition? Explained For Primary School Parents & Teachers

Neil almond.

Here we explain what exactly column addition is, tell you how it is used and learnt in primary schools and provide some examples of questions involving this method!

Column addition is just one part of a child’s journey through addition. As with column subtraction it is also one part of the journey where teachers should not rush to get pupils to this point.

Our younger learners would be far better off with being exposed to, and having ample time to practice, mental methods of addition that have been carefully thought out and sequenced. It is not until Year 3 that the ‘formal’ method of column addition needs to be introduced.

## What is column addition?

What is the expanded column method for addition, when do children learn about column addition in school, how do you arrange and add columns in column addition, 2 digit addition with regrouping, addition of three digit numbers, column addition with decimals, what other methods of addition are used in schools, column addition worked examples, column addition word problems and answers, column addition example questions.

Column addition is what the curriculum calls a ‘formal’ written method for solving questions and problems involving addition. Column addition is first introduced in Year 3 but will continue to be used by pupils up to Year 6 and beyond.

The column method of addition relies on pupils being able to correctly arrange a calculation, such as 789 – 642, into columns so that the operation of addition can take place. An example of this can be found in appendix 1 of the mathematics curriculum:

Before going straight to the column method above, a good intermediate way to get pupils ready for it is to use the expanded column method.

Expanded refers to writing out each digit into its corresponding value. For example, writing the 3-digit-number 456 in its expanded form would be 400, 50 and 6.

Place value counters are usually used to help show this connection, where 4 one hundred counters would be in the hundred’s column, 4 tens counters in the tens column and 6 ones placed in the one’s column.

In the context of column addition, for example 456 + 243, it would look like this:

400 50 6 +

200 40 3

When both numbers are added together, the answer 699 is obtained. This is shown by placing all the counters together.

There is, however, no requirement for teachers to teach the expanded addition method as it is not in the national curriculum.

## Join the Third Space Learning Maths Hub

To browse our entire collection of free and premium maths resources for teachers and parents, register to join the Third Space Learning maths hub. It's quick, easy and free! (Please use Google Chrome to access the Maths Hub)

Children will first encounter column addition in Year 3. They will be expected to:

- add and subtract numbers with up to 3 digits, using formal written methods of columnar addition and subtraction

In Year 4, this progresses to the following statement:

- add and subtract numbers with up to 4 digits using the formal written methods of columnar addition and subtraction where appropriate

When in Year 5, this progresses to:

- add and subtract whole numbers with more than 4 digits, including using formal written methods (columnar addition and subtraction)

For Year 6, while there is no statutory statement for column method, the non-statutory notes and guidance stipulates the following:

- Pupils practise addition, subtraction, multiplication and division for larger numbers, using the formal written methods of columnar addition and subtraction, short and long multiplication, and short and long division

When you rearrange a written addition calculation into columns, it is important to remember some crucial elements that need to be correct. Unlike with subtracting, the operation of addition benefits from the commutative law. This means that we can write 756 + 123 as the following:

756 +

The answer will be the same regardless.

However, like with column subtraction, an important part of the arrangement is to ensure the place values all align. This is especially true for when you need to add numbers that have a different number of digits. Getting this part of the process wrong will definitely result in the procedure delivering an incorrect answer. If the calculation was 1430 + 345, it is imperative that these are arranged correctly in the following way:

1,430 + and not as 1,430 +

345 345

This is why having a real solid understanding of place value is imperative to being able to correctly use column addition.

In the early experiences of column addition, teachers need to be careful about not providing two digits that will cross over 10 as the procedure increases in complexity when this is the case. We will explore this through the calculation of 45 + 38.

The base system used in our number system is the base 10 number system, which means that the system creates an additional place value when the digits in the place value exceed 9. As can be seen in the ones column, the number represented by all the ones would exceed 9. Pupils who do not understand this aspect of the number system are likely to write the following answer:

The concept of exchanging is an important one and an idea that pupils need to master to be successful to perform column addition of this type.

Pupils need to know that they can group 10 ones and that these can be regrouped for 1 ten.

This 10, quite clearly, needs to be moved into the 10s place value.

We can see now how this regrouping has affected the representation. No longer are there 13 ones in the ones. In terms of column addition, this now looks like this:

All that is left to do is to add up all the 10s.

Pupils can now see that there are 9 tens counters so we can write this as:

Including the additional ‘1’ digit which was represented by the grouping of the additional 10 ones is also a crucial step that pupils can often miss out when performing the formal method. It is important to show this working out so that pupils can fully understand the method and what they are doing.

While I would advocate that pupils first learn the regrouping method of column addition with 2-digit by 2-digit calculations, this would be to show how the procedure works only and to make the maths more manageable.

I would still want to encourage mental methods of solving these types of questions in the first instance. Pupils should know that the formal written method should be a fall back strategy when they cannot perform the calculation mentally, not the default.

Thankfully, when pupils have understood the concept behind the place value system, there is nothing new to learn, as such. Rather, there are just more times where it needs to be applied. Take 537 + 572. First, we can add the ones.

Next, add the tens.

The total of 3 + 7 = 10 and so we can group those 10 tens and group them into 1 hundreds. It is important that 0 is written as a place value holder. The 1 hundred can be written above or below the 100’s column.

Finally, we can add the digits in the hundreds together. This will include the additional ‘1’ hundred and give a total of 11. As there are no more columns to add together the 11 may be written without having to place a digit above the next place value.

It is important for pupils to realise, however, that this is not 11 but represents a 1 in the thousand’s place and a 1 in the hundred’s. This is demonstrated pictorially below.

When pupils increase their understanding of decimal place value, they will be expected to use their knowledge of this and of column addition to solve problems involving decimals. This is usually done in the context of measurements.

It is important that pupils understand that the principles of place value that they should know and how column addition works does not change, it is only the context (decimals) that changes.

As mentioned in the introduction, column addition should not be the go-to strategy that pupils are taught immediately. There are many other mental strategies that pupils need to learn first which they do in the early stages of schooling.

Common strategies include:

- Partitioning : This is where numbers are partitioned (broken apart) into its place value. This is then used for the pupils to perform two separate additions.

For example. 36 + 22 =

36 + 20 + 2. From here pupils could perform 2 + 6 and 30 + 2 and before adding the sum of both questions together to get 58.

- Bridging to ten: This is linked to partitioning , but the number is not broken up into its expanded form but partitioned in such a way that a bond to 10 can be created. For example, in 67 + 25, the 25 could be partitioned into 20 + 3 + 2. This would allow the 3 to be added to the 67 to get 70 and then 20 could be added to the 70 to get 90 before finally adding the 2 to get a total of 92. Number lines are a useful tool to aid pupils in doing this.

As has already been warned previously, but I feel it important to state again, when pupils go on to learn the formal method of addition, they fall into the habit of using this method to solve every addition question they come across.

Teachers, however, should encourage the use of the formal written method as a fall back or checking strategy and prioritise the mental strategies in Key Stage 2.

1. 356 + 567 =

This question should prove straight forward and require little explanation at this stage as to what the steps are. It is crucial that pupils remember to write the digit that they are ‘carrying’ over to the next place value for the answer to be accurate.

2. 4,783 + 2,349

As with the question above, this question is no more complicated but just contains more steps to reach the conclusion. Pupils will need to add 9 and 3 to get 12. The ones will need to be written in the ones column and the 1 ten written underneath the tens.

Next is to add 80, 40 and 10. The tens are written down in the tens place and the hundred is carried over. This is repeated until all the digits have been added together.

3. 2,354.43 + 1,789.52 =

As in the examples above, once pupils have that understanding of place value, the concept of column addition remains the same.

1. Harry had £476 in his bank account. His brother, Ron, had £874 in his. How much money did they have altogether?

This is an example of the addition structure of aggregation. There are two separate quantities, and we want to see what the combined total is. However, the two amounts remain quite distinct.

Together, they would have £1,350.

2. A bike costs £1899. The price increases by £279. What is the new price?

This is the augmentation structure of addition where there is a clear increase in quantity and not a combination of two separate quantities. The process of solving the problem is the same as all other column addition problems.

1. 345 + 237 =

(Answer = 582)

2. 6,473 + 4,287 =

(Answer = 10,760)

3. 795.32 + 452.12 =

(Answer = 1,247.44)

4. Harry had £734 in his bank account. His brother, Ron, had £609 in his. How much money did they have altogether?

(Answer = £1,343)

5. Bill wrote 2,378 words on Saturday morning and then wrote another 1,789 words in the afternoon. How many words did he write altogether?

(Answer = 4,167)

6. A bike costs £1699. The price increases by £579. What is the new price?

(Answer = £2,287)

First, place the digits of the numbers in the correct column corresponding to their place value then add the digits in each column together.

Encourage estimation first. Then begin the addition from the ones column, moving increasingly through the digits with greater place value.

Children can begin by using column addition and subtraction of three-digit numbers before moving to 4-digit numbers in Year 4 and then more than 4-digit numbers in Year 5.

Column addition is a written method for solving questions and problems involving addition.

Wondering about how to explain other key maths vocabulary to your children? Check out our Primary Maths Dictionary , or try these:

- Teaching Addition and Subtraction KS2
- Addition Year 5 : Common Misconceptions
- Subtraction Year 5 : Common Misconceptions
- What Are Number Bonds?
- What Is a Number Square?
- What Is Subitising?

You can find addition and subtraction worksheets for KS1 & KS2 primary school pupils here.

Online 1-to-1 maths lessons trusted by schools and teachers Every week Third Space Learning’s maths specialist tutors support thousands of primary school children with weekly online 1-to-1 lessons and maths interventions . Since 2013 we’ve helped over 150,000 children become more confident, able mathematicians. Learn more or request a personalised quote to speak to us about your needs and how we can help.

Primary school tuition targeted to the needs of each child and closely following the National Curriculum.

Related Articles

## FREE Long Division Worksheets for KS2

3 ready to use worksheets for your class that will help them with all aspects of long division from 1-digit numbers through to working out multiples!

One worksheet covering division with 1-digit numbers, one covering 2-digit numbers and one for working out multiples.

## Privacy Overview

- International
- Schools directory
- Resources Jobs Schools directory News Search

## Problem-Solving Investigation: Column addition (4- and 5-digit numbers). (Year 5 Add & Sub)

Subject: Mathematics

Age range: 7-11

Resource type: Worksheet/Activity

Last updated

21 August 2019

- Share through email
- Share through twitter
- Share through linkedin
- Share through facebook
- Share through pinterest

Year 5 Addition & Subtraction: Column addition (4- and 5-digit numbers).

This in-depth Maths Investigation will develop maths meta-skills, and enable children to learn to think mathematically and articulate mathematical ideas.

In-depth Investigation: Exasperating 80 Grand Children use all of the digits 0 to 9 once only to create pairs of five-digit numbers, with a total as close to 80,000 as possible.

This problem-solving investigation is part of our Year 5 Addition and Subtraction block. Each Hamilton maths block contains a complete set of planning and resources to teach a terms worth of objectives for one of the National Curriculum for England’s maths areas.

Creative Commons "NoDerivatives"

## Get this resource as part of a bundle and save up to 25%

A bundle is a package of resources grouped together to teach a particular topic, or a series of lessons, in one place.

## Year 5 Problem-Solving Investigations: Addition and Subtraction

These in-depth maths investigations are open-ended problem solving activities for Year 5 children. **In-depth Investigation: Exasperating 80 Grand** Children use all of the digits 0 to 9 once only to create pairs of five-digit numbers, with a total as close to 80,000 as possible. **In-depth Investigation: Adding Odd and Even Amounts** Children create two amounts of money – one with even digits, one with odd digits – and add these. They look for patterns of even/odd in the totals. **In-depth Investigation: Persistent Answers** Children subtract numbers with consecutive digits from numbers with identical digits and record the different possible answers. **In-depth Investigation: Magic Star Additions** Children explore addition patterns on a star derived from a simple magic star. They use mental or written addition to add 4-digit numbers. **In-depth Investigation: Mobile Differences** Children use trial and improvement to find the largest and smallest possible differences using numbers selected to given criteria. **In-depth Investigation: Durer’s Magic Square** Children complete ‘Durer’s Magic Square’, then use it to create 2- or 3-digit numbers and find the difference between different pairs. They identify patterns. These investigations will develop maths meta-skills, support open-ended questioning and logical reasoning, and enable children to learn to think mathematically and articulate mathematical ideas. These problem-solving investigations come from our [Year 5 Maths Blocks](https://www.hamilton-trust.org.uk/maths/year-5-maths/). Each Hamilton maths block contains a complete set of planning and resources to teach a term’s worth of objectives for one of the National Curriculum for England’s maths areas.

Your rating is required to reflect your happiness.

It's good to leave some feedback.

Something went wrong, please try again later.

This resource hasn't been reviewed yet

To ensure quality for our reviews, only customers who have downloaded this resource can review it

Report this resource to let us know if it violates our terms and conditions. Our customer service team will review your report and will be in touch.

## IMAGES

## VIDEO

## COMMENTS

Matrices, being the organization of data into columns and rows, can have many applications in representing demographic data, in computer and scientific applications, among others. They can be used as a representation of data or as a tool to...

The six steps of problem solving involve problem definition, problem analysis, developing possible solutions, selecting a solution, implementing the solution and evaluating the outcome. Problem solving models are used to address issues that...

Maytag washers are reliable and durable machines, but like any appliance, they can experience problems from time to time. Fortunately, many of the most common issues can be solved quickly and easily. Here’s a look at how to troubleshoot som...

1,515 Top "Column Addition Problem Solving Questions" Teaching Resources curated for you. · Addition and Subtraction Word Problems Year 3 · Addition Word Problem

Problem solving using the column method. Key Stage 2, Maths, Problem solving with integer addition and subtraction · Introduction · Intro Quiz · Video

Expected Identify two missing digits in a 3-digit addition calculation with some crossing of tens and/or hundreds. Numerals used in a column format. Greater

Pupils use their knowledge of column addition to solve problems. 6, Pupils add a pair of 2-digit numbers using column addition with regrouping in the ones

The Importance of Extreme Points in Problem Solving · Graphical Sensitivity

Includes adding two 4- digit numbers using a column format. Some use of zero as a place holder. Greater Depth Find and explain mistakes in addition with

From Year 5 as part of the fractions strand of the national curriculum, pupils will solve problems involving decimals. At this point, they also use the column

Column addition is what the curriculum calls a 'formal' written method for solving questions and problems involving addition. Column addition is first

Children use all of the digits 0 to 9 once only to create pairs of five-digit numbers, with a total as close to 80,000 as possible. This problem-solving

I can use the column method to work out 300-. 57 and exchange when I need to. Week 4 to 8 – Number: Addition and Subtraction. Reasoning and Problem Solving.

Use column addition to help you. Bar model. Column addition. Use column addition to solve the word problems below. Remember to regroup where needed. Word